Skip to main content

Advertisement

Log in

Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The response of a laboratory-raised phytoplankton assemblage to copper and zinc enrichment was studied. Higher intracellular accumulation of both the test metals caused disappearance of metal sensitive species, loss of diversity and species richness, reduced growth rate, Chl a and biovolume; however, the community could recover after 14 days of incubation. Cyanobacteria showed marked sensitivity to both the test metals besides some diatoms, such as, Cyclotella meneghiniana and Melosira granulata. Metal enrichment enhanced the relative abundance of species like Scenedesmus quadricauda, Oocystis borgei, Achnanthes exigua, Fragilaria capucina and Nitzschia amphibia, and these were apparently metal tolerant. Cu and Zn stress induces formation of lipid bodies (bigger in size as well as in number) and morphological abnormalities in diatoms. Among these two metals, Cu impact was higher than Zn despite the fact that the intracellular accumulation of Zn was higher than Cu. Deformed raphe and mixed deformities in diatoms were exclusively found under heavy metal stress which was well supported by regression analysis. Finally the present study gives new insight for using diatoms as an effective tool for biomonitoring and biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Algal Image database of India (AIDI) (2014) http://indianalgae.co.in.

  2. ANSP Algal Image Database from the phycology Section, Patrick centre for environmental research, The academy of Natural sciences. http://diatom.acnatsci.org/AlgaeImage/.

  3. Guiry MD, Guir GM (2014) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org.

References

  • Arini A, Durant F, Coste M, Delmas F, Feurtet-Mazel A (2013) Cadmium decontamination and reversal potential of teratological forms of the diatom Planothidium frequentissimum (Bacillariophyceae) after experimental contamination. J Phycol 49(2):361–370

    Article  CAS  Google Scholar 

  • Bere T, Tundisi JG (2012) Cadmium and lead toxicity on tropical freshwater periphyton communities under laboratory-based mesocosm experiments. Hydrobiologia 680:187–197

    Article  CAS  Google Scholar 

  • Biggs BJF, Kilroy C (2000) Stream periphyton monitoring manual. The New Zealand Ministry for the Environment, Christchurch

  • Cattaneo A, Couillard Y, Wunsam S, Courcelles M (2004) Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol 32:163–175

    Article  Google Scholar 

  • Cohn SA, Pickett-Heaps JD (1988) The effects of colchicine and dinitrophenol on the in vivo rates of anaphase A and B in the diatom Surirella. Eur J Cell Biol 46:523–530

    CAS  Google Scholar 

  • Cohn SA, Farrell JF, Munro JD, Ragland RL, Weitzell RE Jr, Wibisono BL (2003) The effect of temperature and mixed species composition on diatom motility and adhesion. Diatom Res 18:225–243

    Article  Google Scholar 

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90:19–28

    Article  CAS  Google Scholar 

  • Einicker-Lamas M, Mezian GA, Fernandes TB, Silva FLS, Guerra F, Miranda K, Attias M, Oliveira MM (2002) Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut 120:779–786

    CAS  Google Scholar 

  • Falasco E, Bona F, Badino G, Hoffmann L, Ector L (2009a) Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623:1–35

    Article  CAS  Google Scholar 

  • Falasco E, Bona F, Ginepro M, Hlúbiková D, Hoffmann L, Ector L (2009b) Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA 35:595–605

    Article  CAS  Google Scholar 

  • Foster PL (1982a) Species associations and metal contents of algae from rivers polluted by heavy-metals. Freshw Biol 12:17–39

    Article  CAS  Google Scholar 

  • Foster PL (1982b) Metal resistances of Chlorophyta from river polluted by Heavy-metals. Freshwater Biol. 12:41–61

    Article  CAS  Google Scholar 

  • Gächter R, Máreš A (1979) MELIMEX, an experimental heavy metal pollution study: Effects of increased heavy metal loads on phytoplankton communities. Schweiz Z Hydrol 41:228–246

    Google Scholar 

  • Genter RB (1995) Benthic algal populations respond to aluminum, acid and aluminum-acid mixtures in artificial streams. Hydrobiologia 306:7–19

    Article  CAS  Google Scholar 

  • Gold C, Feurtet-Mazel A, Coste M, Boudou A (2003) Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshw Biol 48:316–328

    Article  CAS  Google Scholar 

  • Guasch H, Paulsson M, Sabater S (2002) Effect of copper on algal communities from oligotrophic calcareous streams. J Phycol 38:241–248

    Article  CAS  Google Scholar 

  • Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3:221–240

    Article  CAS  Google Scholar 

  • Hill BH, Williamgham WT, Parrish LP, McFarland BH (2000) Periphyton community responses to elevated metal concentrations in a Rocky Mountain stream. Hydrobiologia 428:161–169

    Article  CAS  Google Scholar 

  • Hillebrand H, Durselen C, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Hirst H, Ingrid JU, Jüttner I, Ormerod SJ (2002) Comparing the responses of diatoms and macroinvertebrates to metals in upland streams of Wales and Cornwall. Freshw Biol 47:1752–1765

    Article  CAS  Google Scholar 

  • Ivorra N, Hettelaar J, Kraak MHS, Sabater S, Admiraal W (2002) Responses of biofilms to combined nutrient and metal exposure. Environ Toxicol Chem 21:626–632

    Article  CAS  Google Scholar 

  • Jones GJ, Nichols PD, Johns RB, Smith JD (1987) The effect of mercury and cadmium on the fatty-acid and sterol composition of the marine diatom Asterionella glacialis. Phytochemistry 26:1343–1348

    Article  CAS  Google Scholar 

  • Kumar D, Yadav A, Gaur JP (2012) Growth, composition and metal removal potential of a Phormidium bigranulatum dominated mat at elevated levels of cadmium. Aquat Toxicol 116–117:24–33

    Article  Google Scholar 

  • Lavoie I, Lavoie M, Fortin C (2012) A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci Total Environ 425:231–241

    Article  CAS  Google Scholar 

  • Le Faucheur S, Behra R, Sigg L (2005) Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: a field and microcosm study. Environ Sci Technol 39:8099–8107

    Article  Google Scholar 

  • Leland HV, Carter JL (1984) Effects of copper on species composition of periphyton in a Sierra Nevada, California, stream. Freshwater Biol 14:281–296

    Article  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  Google Scholar 

  • Loez CR, Topalián ML, Salibián A (1995) Effects of zinc on the structure and growth dynamics of a natural assemblage reared in the laboratory. Environ Pollut 8:275–281

    Article  Google Scholar 

  • Meador JP, Sibley TH, Swartzman GWL, Taub FB (1998) Copper tolerance by the freshwater algal species Oocystis pusilla and its ability to alter free-ion copper. Aquat Toxicol 44:69–82

    Article  CAS  Google Scholar 

  • Medley CL, Clements WH (1998) Responses of diatom communities to heavy metals in streams: the influence of longitudinal variation. Ecol Appl 8:631–644

    Article  Google Scholar 

  • Meylan S, Behra R, Sigg L (2004) Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. Environ Sci Technol 30:3104

    Article  Google Scholar 

  • Monteiro M, Oliveira R, Vale C (1995) Metal stress on the plankton communities of Sodo river (Portugal). Water Res 29:695–701

    Article  CAS  Google Scholar 

  • Morin S, Duong TT, Dabrin A, Coynel A, Herlory O, Baudrimont M, Delmas F, Durrieu G, Schäfer J, Winterton P, Blanc G, Coste M (2008a) Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ Pollut 151:532–542

    Article  CAS  Google Scholar 

  • Morin S, Duong TT, Herlory O, Feurtet-Mazel A, Coste M (2008b) Cadmium toxicity and bioaccumulation in freshwater biofilms. Arch Environ Contam Toxicol 5:173–186

    Article  Google Scholar 

  • Oliveira R (1985) Phytoplankton community response to a mine effluent rich in copper. Hydrobiologia 128:61–69

    Article  Google Scholar 

  • Pandey LK, Kumar D, Yadav A, Rai J, Gaur JP (2014) Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol Indic 36:272–279

    Article  CAS  Google Scholar 

  • Pillai S, Behra R, Nestler H, Suter MJF, Sigg L, Schirmer K (2014) Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci USA. doi:10.1073/pnas.1319388111

    Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leita˜o MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Rai LC, Mallick N (1993) Heavy metal toxicity to algae under synthetic microcosm. Ecotoxicology 2:231–242

    Article  CAS  Google Scholar 

  • Rai PK, Tripathi BD (2008) Heavy metals in industrial wastewater, soil and vegetables in Lohta village, India. Toxicol Environm Chem 90:247–257

    Article  CAS  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Rai PK, Mishra A, Tripathi BD (2010) Heavy metal and microbial pollution of the river Ganga: a case study of water quality at Varanasi. Aquat Ecosyst Health Manag 13:352–361

    Article  CAS  Google Scholar 

  • Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48:8769–8788

    Article  CAS  Google Scholar 

  • Roig B, Valat C, Behro C, Allan IJ, Guigues N, Mills GA, Ulitzur N, Greenwood R (2007) The use of field studies to establish the performance of a range of tools for monitoring water quality. Trends Anal Chem 8:1243–1251

    Google Scholar 

  • Ruggiu D, Luglie A, Cattaneo A, Panzani P (1998) Paleoecological evidence for diatom response to metal pollution in lake Orta (N. Italy). J Paleolimnol 20:333–345

    Article  Google Scholar 

  • Rushforth SR, Brotherson JD, Fungladda N, Evenson WE (1981) The effects of dissolved heavy metals on attached diatoms in the Uintah Basin of Utah, U.S.A. Hydrobiologia 83:313–323

    Article  CAS  Google Scholar 

  • Sabater S (2000) Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. J Appl Phycol 12:113–124

    Article  CAS  Google Scholar 

  • Sabater S, Navarro E, Guasch H (2002) Effects of copper on algal communities at different current velocities. J Appl Phycol 14:391–398

    Article  CAS  Google Scholar 

  • Serra A, Corcoll N, Guasch H (2009) Copper accumulation and toxicity in fluvial periphyton: The influence of exposure history. Chemosphere 74:633–641

    Article  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shehata SA, Lasheen MR, Kobbia IA, Ali GH (1999) Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water Air Soil Pollut 110:119–135

    Article  CAS  Google Scholar 

  • Sigmon CF, Kania HJ, Beyers RJ (1977) Reductions in biomass and diversity resulting from exposure to mercury in artificial streams. J Fish Res Board Can 34:493–500

    Article  CAS  Google Scholar 

  • Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317

    Article  CAS  Google Scholar 

  • Takamura N, Kasai F, Watanabae MM (1989) Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol 1:39–52

  • Tripathi BN, Singh A, Gaur JP (2000) Impact of heavy metal pollution on algal assemblages. Environ Sci 9:1–7

    Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    Article  CAS  Google Scholar 

  • Wetzel RG, Likens GE (1979) Limnological analyses. Saunders, Philadelphia

    Google Scholar 

  • Whitton BA (1970a) Toxicity of heavy metals to Chlorophyta from flowing waters. Arch Mikrobiol 72:553–560

    Google Scholar 

  • Whitton BA (1970b) Toxicity of heavy metals to freshwater algae: a review. Phykos 9:116–125

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Head, Department of Botany, and the coordinator, Centre of Advanced Study in Botany, Banaras Hindu University, for necessary facilities. LKP thanks UGC and CSIR, New Delhi, for financial assistance in the form of SRF. This work was supported by Incheon National University (International Cooperative Research Grant). We are grateful to Dr. J.C. Taylor (North-West University, South Africa) for generous gift of Pleurax.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit K. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, L.K., Han, T. & Gaur, J.P. Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm. Ecotoxicology 24, 573–582 (2015). https://doi.org/10.1007/s10646-014-1405-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1405-5

Keywords

Navigation