Skip to main content

Advertisement

Log in

An active photosynthetic electron transfer chain required for mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In this study, quantitative real time RT-PCR has been used to monitor changes in the levels of transcripts encoding mcyD in Microcystis aeruginosa PCC7806 under oxidative agents and different conditions of light intensity. Microcystin content has also been determined in the same stressed cell aliquots. Our results corroborate the fact that changes in light intensities are able to induce mcyD gene transcription, but our data show that this is an early and short-term event. mcyD transcription requires an active photosynthetic electron transfer chain and the increased transcript level as a consequence of light is not related to oxidative stress. Indeed, oxidative stress leads to a general trend of a decrease of mcyD trancript. Microcystin amount found in the cells follows a tendency consistent with the mcyD transcript level. In summary, the data indicate that the synthesis of microcystin is dependent on photosynthesis, and also show that oxidative stress decreases the microcystin synthesis in toxigenic Microcystis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858

    Article  CAS  Google Scholar 

  • Allen JF (1993) Redox control of transcription: sensors, response regulators, activators and repressors. FEBS Lett 332:203–207

    Article  CAS  Google Scholar 

  • Bowler C, Chua NH (1994) Emerging themes of plant signal transduction. Plant Cell 6:1529–1541

    Article  CAS  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    Article  CAS  Google Scholar 

  • Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimsen EM, Lau S, Rinehart KL, Shaw GR, Eaglesham GK (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663–668

    Article  CAS  Google Scholar 

  • Diaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AW (2004) The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator. Microbiology 150:1447–1456

    Article  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  Google Scholar 

  • Hesse K, Dittmann E, Börner T (2006) Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC7806. FEMS Microbiol Ecol 37:39–43

    Article  Google Scholar 

  • Jiang Y, Ji B, Wong RNS, Wong MH (2008) Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium Microcystis aeruginosa. Harmful Algae 7:127–136

    Article  CAS  Google Scholar 

  • Kaebernick M, Neilan BA, Borner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    Article  CAS  Google Scholar 

  • Kaebernick M, Dittmann E, Borner T, Neilan BA (2002) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide. Appl Environ Microbiol 68:449–455

    Article  CAS  Google Scholar 

  • Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598

    Article  CAS  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  Google Scholar 

  • Martin-Luna B, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2006a) Identification of a ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbiol Lett 254:63–70

    Article  CAS  Google Scholar 

  • Martin-Luna B, Sevilla E, Hernandez JA, Bes MT, Fillat MF, Peleato ML (2006b) Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster. Phytochemistry 67:876–881

    Article  CAS  Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada K, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529

    CAS  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  CAS  Google Scholar 

  • Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  CAS  Google Scholar 

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Brautigam K, Wagner R, Dietzel L, Schroter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    Article  CAS  Google Scholar 

  • Rapala J, Sivonen K, Lyra C, Niemela SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    CAS  Google Scholar 

  • Rippka R, Deruelles JB, Waterbury M, Herdman M, Stanier RY (1979) Genetics assignments, strain stories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Peleato ML, Fillat MF (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10:2476–2483

    Article  CAS  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2010) Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology 19:1167–1173

    Article  CAS  Google Scholar 

  • Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56:2658–2666

    CAS  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    Article  CAS  Google Scholar 

  • Utkilen H, Gjolme N (1992) Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl Environ Microbiol 58:1321–1325

    CAS  Google Scholar 

  • Utkilen H, Gjolme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800

    CAS  Google Scholar 

  • Watanabe MF, Oishi S (1985) Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl Environ Microbiol 49:1342–1344

    CAS  Google Scholar 

  • Wiedner C, Visser PM, Fastner J, Metcalf JS, Codd GA, Mur LR (2003) Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl Environ Microbiol 69:1475–1481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Ministry of Education and Science and FEDER (BFU2006-03454, PET2006-0089 and BFU2009-07424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luisa Peleato.

Additional information

E. Sevilla and B. Martin-Luna contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevilla, E., Martin-Luna, B., Bes, M.T. et al. An active photosynthetic electron transfer chain required for mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Ecotoxicology 21, 811–819 (2012). https://doi.org/10.1007/s10646-011-0842-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0842-7

Keywords

Navigation