Skip to main content
Log in

Synergistic effect of adavosertib and fimepinostat on acute myeloid leukemia cells by enhancing the induction of DNA damage

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

In recent years, a number of novel pharmaceutical agents have received approval for the management of acute myeloid leukemia (AML). However, there is still ample opportunity for enhancing efficacy. The Wee1 inhibitor adavosertib (ADA) shows promise for the treatment of AML. Based on the effect of drugs on DNA damage, we conducted a combination study involving ADA and fimepinostat (CUDC-907), a dual inhibitor of PI3K and histone deacetylase (HDAC). We observed that the combination of CUDC-907 and ADA exhibited a synergistic effect in enhancing the antileukemic activity in both AML cell lines and primary patient samples, demonstrating through flow cytometry analysis and MTT assay, respectively. Additionally, our study revealed that CUDC-907 has the ability to augment ADA-induced DNA damage, as determined by the measurement of γH2AX levels and the implementation of the alkaline comet assay. Through the utilization of western blotting analyses, targeted inhibitors, and ectopic overexpression, we propose that the downregulation of Wee1, CHK1, RNR, and c-Myc are the potential mechanisms. Our data support the development of ADA in combination with CUDC-907 for the treatment of AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bhansali RS, Pratz KW, Lai C (2023) Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol 16(1):29. https://doi.org/10.1186/s13045-023-01424-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matheson CJ, Backos DS, Reigan P (2016) Targeting WEE1 Kinase in Cancer. Trends Pharmacol Sci 37(10):872–881. https://doi.org/10.1016/j.tips.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  3. Qi W, Xie C, Li C, Caldwell JT, Edwards H, Taub JW, Wang Y, Lin H, Ge Y (2014) CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells. J Hematol Oncol 7:53. https://doi.org/10.1186/s13045-014-0053-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen G, Zhang B, Xu H, Sun Y, Shi Y, Luo Y, Jia H, Wang F (2017) Suppression of Sirt1 sensitizes lung cancer cells to WEE1 inhibitor MK-1775-induced DNA damage and apoptosis. Oncogene 36(50):6863–6872. https://doi.org/10.1038/onc.2017.297

    Article  CAS  PubMed  Google Scholar 

  5. Hauge S, Macurek L (2019) p21 limits S phase DNA damage caused by the Wee1 inhibitor MK1775. 18(8):834–847. https://doi.org/10.1080/15384101.2019.1593649

  6. Fu S, Wang Y, Keyomarsi K, Meric-Bernstam F, Meric-Bernstein F (2018) Strategic development of AZD1775, a Wee1 kinase inhibitor, for cancer therapy. Expert Opin Investig Drugs 27(9):741–751. https://doi.org/10.1080/13543784.2018.1511700

    Article  CAS  PubMed  Google Scholar 

  7. Shafer D, Kagan AB, Rudek MA, Kmieciak M, Tombes MB, Shrader E, Bandyopadhyay D, Hudson D, Sankala H, Weir C, Lancet JE, Grant S (2023) Phase 1 study of belinostat and adavosertib in patients with relapsed or refractory myeloid malignancies. Cancer Chemother Pharmacol 91(3):281–290. https://doi.org/10.1007/s00280-023-04511-0

    Article  CAS  PubMed  Google Scholar 

  8. Schutte T, Embaby A, Steeghs N, van der Mierden S, van Driel W, Rijlaarsdam M, Huitema A, Opdam F (2023) Clinical development of WEE1 inhibitors in gynecological cancers: A systematic review. Cancer Treat Rev 115:102531. https://doi.org/10.1016/j.ctrv.2023.102531

    Article  CAS  PubMed  Google Scholar 

  9. Porter CC, Kim J, Fosmire S, Gearheart CM, van Linden A, Baturin D, Zaberezhnyy V, Patel PR, Gao D, Tan AC, DeGregori J (2012) Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia. Leukemia 26(6):1266–1276. https://doi.org/10.1038/leu.2011.392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi W, Xu X, Wang M, Li X, Wang C, Sun L, Zhao D, Sun L (2019) Inhibition of Wee1 sensitizes AML cells to ATR inhibitor VE-822-induced DNA damage and apoptosis. Biochem Pharmacol 164:273–282. https://doi.org/10.1016/j.bcp.2019.04.022

    Article  CAS  PubMed  Google Scholar 

  11. Garcia TB, Snedeker JC, Baturin D, Gardner L, Fosmire SP, Zhou C, Jordan CT, Venkataraman S, Vibhakar R, Porter CC (2017) A Small-Molecule Inhibitor of WEE1, AZD1775, Synergizes with Olaparib by Impairing Homologous Recombination and Enhancing DNA Damage and Apoptosis in Acute Leukemia. Mol Cancer Ther 16(10):2058–2068. https://doi.org/10.1158/1535-7163.mct-16-0660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Okabe S, Tanaka Y, Moriyama M, Gotoh A (2023) WEE1 and PARP-1 play critical roles in myelodysplastic syndrome and acute myeloid leukemia treatment. Cancer Cell Int 23(1):128. https://doi.org/10.1186/s12935-023-02961-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi W, Zhang W, Edwards H, Chu R, Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H, Ge Y (2015) Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo. Cancer Biol Ther 16(12):1784–1793. https://doi.org/10.1080/15384047.2015.1095406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou L, Zhang Y, Chen S, Kmieciak M, Leng Y, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Dai Y, Grant S (2015) A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia 29(4):807–818. https://doi.org/10.1038/leu.2014.296

    Article  CAS  PubMed  Google Scholar 

  15. Qian C, Lai CJ, Bao R, Wang DG, Wang J, Xu GX, Atoyan R, Qu H, Yin L, Samson M, Zifcak B, Ma AW, DellaRocca S, Borek M, Zhai HX, Cai X, Voi M (2012) Cancer network disruption by a single molecule inhibitor targeting both histone deacetylase activity and phosphatidylinositol 3-kinase signaling. Clinical cancer research : an official journal of the American Association for Cancer Research 18(15):4104–4113. https://doi.org/10.1158/1078-0432.ccr-12-0055

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Su Y, Madlambayan G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Ma J, Knight T, Wang G, Wang Y, Yang J, Taub JW, Lin H, Ge Y (2019) Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica 104(11):2225–2240. https://doi.org/10.3324/haematol.2018.201343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Su Y, Hege K, Madlambayan G, Edwards H, Knight T, Polin L, Kushner J, Dzinic SH, White K, Yang J, Miller R, Wang G, Zhao L, Wang Y, Lin H, Taub JW, Ge Y (2021) The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Haematologica 106(5):1262–1277. https://doi.org/10.3324/haematol.2019.233445

    Article  CAS  PubMed  Google Scholar 

  18. Qiao X, Ma J, Knight T, Su Y, Edwards H, Polin L, Li J, Kushner J, Dzinic SH, White K, Wang J, Lin H, Wang Y, Wang L, Wang G, Taub JW, Ge Y (2021) The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J 11(6):111. https://doi.org/10.1038/s41408-021-00502-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hege Hurrish K, Qiao X, Li X, Su Y, Carter J, Ma J, Kalpage HA, Hüttemann M, Edwards H, Wang G, Kim S, Dombkowski A, Bao X, Li J, Taub JW, Ge Y (2022) Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia. Biochem Pharmacol 205:115283. https://doi.org/10.1016/j.bcp.2022.115283

    Article  CAS  PubMed  Google Scholar 

  20. Oki Y, Kelly KR, Flinn I, Patel MR, Gharavi R, Ma A, Parker J, Hafeez A, Tuck D, Younes A (2017) CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 102(11):1923–1930. https://doi.org/10.3324/haematol.2017.172882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landsburg DJ, Barta SK, Ramchandren R, Batlevi C, Iyer S, Kelly K, Micallef IN, Smith SM, Stevens DA, Alvarez M, Califano A, Shen Y, Bosker G, Parker J, Soikes R, Martinez E, von Roemeling R, Martell RE, Oki Y (2021) Fimepinostat (CUDC-907) in patients with relapsed/refractory diffuse large B cell and high-grade B-cell lymphoma: report of a phase 2 trial and exploratory biomarker analyses. Br J Haematol 195(2):201–209. https://doi.org/10.1111/bjh.17730

    Article  CAS  PubMed  Google Scholar 

  22. O’Connor MJ (2015) Targeting the DNA Damage Response in Cancer. Mol Cell 60(4):547–560. https://doi.org/10.1016/j.molcel.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  23. Uphoff CC, Drexler HG (2005) Detection of mycoplasma contaminations. Methods in molecular biology (Clifton, NJ) 290:13–23. https://doi.org/10.1385/1-59259-838-2:013

    Article  CAS  Google Scholar 

  24. Taub JW, Matherly LH, Stout ML, Buck SA, Gurney JG, Ravindranath Y (1996) Enhanced metabolism of 1-beta-D-arabinofuranosylcytosine in Down syndrome cells: a contributing factor to the superior event free survival of Down syndrome children with acute myeloid leukemia. Blood 87(8):3395–3403

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Su Y, Hege K, Madlambayan G, Edwards H, Knight T, Polin L, Kushner J, Dzinic SH, White K, Yang J, Miller R, Wang G, Zhao L, Wang Y, Lin H, Taub JW, Ge Y (2020) The HDAC and PI3K dual inhibitor CUDC-907 synergistically enhances the antileukemic activity of venetoclax in preclinical models of acute myeloid leukemia. Haematologica: haematol 2019. 233445. https://doi.org/10.3324/haematol.2019.233445

  26. Dai Y, Grant S (2010) New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clinical cancer research : an official journal of the American Association for Cancer Research 16(2):376–383. https://doi.org/10.1158/1078-0432.ccr-09-1029

    Article  CAS  PubMed  Google Scholar 

  27. Sun K, Atoyan R, Borek MA, Dellarocca S, Samson ME, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A, Wang J (2017) Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers. Mol Cancer Ther 16(2):285–299. https://doi.org/10.1158/1535-7163.mct-16-0390

    Article  CAS  PubMed  Google Scholar 

  28. Fu XH, Zhang X, Yang H, Xu XW, Hu ZL, Yan J, Zheng XL, Wei RR, Zhang ZQ, Tang SR, Geng MY, Huang X (2019) CUDC-907 displays potent antitumor activity against human pancreatic adenocarcinoma in vitro and in vivo through inhibition of HDAC6 to downregulate c-Myc expression. Acta Pharmacol Sin 40(5):677–688. https://doi.org/10.1038/s41401-018-0108-5

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Su Y, Madlambayan G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Ma J, Knight T, Wang G, Wang Y, Yang J, Taub JW, Lin H, Ge Y (2019) Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica. https://doi.org/10.3324/haematol.2018.201343

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bose P, Dai Y, Grant S (2014) Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights. Pharmacol Ther 143(3):323–336. https://doi.org/10.1016/j.pharmthera.2014.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Z, Huang Y, Zhang J (2014) Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell Mol Biol Lett 19(2):233–242. https://doi.org/10.2478/s11658-014-0191-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krajewska M, Heijink AM, Bisselink YJ, Seinstra RI, Sillje HH, de Vries EG, van Vugt MA (2013) Forced activation of Cdk1 via wee1 inhibition impairs homologous recombination. Oncogene 32(24):3001–3008. https://doi.org/10.1038/onc.2012.296

    Article  CAS  PubMed  Google Scholar 

  33. Brown JS, O’Carrigan B, Jackson SP, Yap TA (2017) Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 7(1):20–37. https://doi.org/10.1158/2159-8290.cd-16-0860

    Article  CAS  PubMed  Google Scholar 

  34. Rohban S (1849) Campaner S (2015) Myc induced replicative stress response: How to cope with it and exploit it. Biochem Biophys Acta 5:517–524. https://doi.org/10.1016/j.bbagrm.2014.04.008

    Article  CAS  Google Scholar 

  35. Solvie D, Baluapuri A, Uhl L, Fleischhauer D, Endres T, Papadopoulos D, Aziba A, Gaballa A, Mikicic I, Isaakova E, Giansanti C, Jansen J, Jungblut M, Klein T, Schülein-Völk C, Maric H, Doose S, Sauer M, Beli P, Rosenwald A, Dobbelstein M, Wolf E, Eilers M (2022) MYC multimers shield stalled replication forks from RNA polymerase. Nature 612(7938):148–155. https://doi.org/10.1038/s41586-022-05469-4

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China,NSFC82100076,Projects of Jilin Province Science and Technology Development Plan,20220101284JC

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design were from Guan Wang and Yue Wang (the First Hospital of Jilin University). Material preparation, data collection, and analysis were performed by Yue Wang (School of Life Sciences) and Xingyu Lin. The first draft of the manuscript was written by Guan Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yue Wang or Guan Wang.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Human Ethics Committee of the First Hospital of Jilin University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 48 KB)

Supplementary file2 (DOC 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lin, X., Wang, Y. et al. Synergistic effect of adavosertib and fimepinostat on acute myeloid leukemia cells by enhancing the induction of DNA damage. Invest New Drugs 42, 70–79 (2024). https://doi.org/10.1007/s10637-023-01415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01415-x

Keywords

Navigation