Skip to main content

Advertisement

Log in

Soluble interleukin-2 receptor as a predictive biomarker for poor efficacy of combination treatment with anti-PD-1/PD-L1 antibodies and chemotherapy in non-small cell lung cancer patients

  • Research
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Abstract

Soluble interleukin-2 receptor (sIL-2R) suppresses effector T-cells. Few studies have assessed serum sIL-2R in patients receiving immunotherapy. We evaluated the association between serum sIL-2R levels and the efficacy of anti-programmed cell death 1/ programmed death-ligand 1 (anti-PD-1/PD-L1) antibody combined with chemotherapy in non-small cell lung cancer (NSCLC) patients. We prospectively enrolled NSCLC patients who received anti-PD-1/PD-L1 antibody combined with platinum-based chemotherapy between 8/2019 and 8/2020 and measured their serum sIL-2R. The patients were divided into high and low sIL-2R groups based on the median of sIL-2R levels at pretreatment. Progression-free survival (PFS) and overall survival (OS) of patients in the high and low sIL-2R groups were compared. The Kaplan–Meier curves of PFS and OS were evaluated using the log-rank test. The multivariate analysis of PFS and OS was performed using the Cox proportional hazard models. Among 54 patients (median age 65, range 34–84), 39 were male and 43 had non-squamous cell carcinoma. The sIL-2R cut-off value was 533 U/mL. Median PFS was 5.1 months (95% CI, 1.8–7.5 months) and 10.1 months (95% CI, 8.3-not reached [NR] months) in the high and low sIL-2R groups (P = 0.007), respectively. Median OS was 10.3 months (95% CI, 4.0–NR months) and NR (95% CI, 10.3–NR months) in the high and low sIL-2R groups (P = 0.005), respectively. Multivariate Cox regression analysis showed that high sIL-2R was significantly associated with shorter PFS and OS. SIL-2R may be a biomarker for the poor efficacy of anti-PD-1/PD-L1 antibody combined with chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets in this study are available from the corresponding author on reasonable request.

Abbreviations

ALK:

anaplastic lymphoma kinase rearrangement

CI:

confidence intervals

EGFR:

Epidermal growth factor receptor

HR:

Hazard ratio

PD-L1:

programmed cell death-ligand 1

PS:

performance status

S-IL2R:

soluble interleukin 2 receptor

Sq:

squamous cell carcinoma

TPS:

tumor proportion score

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34

    Article  PubMed  Google Scholar 

  2. Sher T, Dy GK, Adjei AA (2008) Small cell lung cancer. Mayo Clin Proc 83(3):355–367

    Article  CAS  PubMed  Google Scholar 

  3. Morgensztern D, Ng SH, Gao F et al (2010) Trends in stage distribution for patients with non-small cell lung cancer: a National Cancer Database survey. J Thorac Oncol 5(1):29–33

    Article  PubMed  Google Scholar 

  4. König D, Savic Prince S, Rothschild SI (2021) Targeted therapy in Advanced and Metastatic Non-Small Cell Lung Cancer. An update on treatment of the most important actionable oncogenic driver alterations. Cancers (Basel) 13(4):804

    Article  PubMed  Google Scholar 

  5. Baggstrom MQ, Stinchcombe TE, Fried DB et al (2007) Third-generation chemotherapy agents in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Thorac Oncol 2(9):845–853

    Article  PubMed  Google Scholar 

  6. Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive non-small-cell Lung Cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  7. Mok TSK, Wu YL, Kudaba I et al (2019) Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393(10183):1819–1830

    Article  CAS  PubMed  Google Scholar 

  8. Herbst RS, Giaccone G, de Marinis F et al (2020) Atezolizumab for First-Line treatment of PD-L1-Selected patients with NSCLC. N Engl J Med 383(14):1328–1339

    Article  CAS  PubMed  Google Scholar 

  9. Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N Engl J Med 378(22):2078–2092

    Article  CAS  PubMed  Google Scholar 

  10. Paz-Ares L, Luft A, Vicente D et al (2018) Pembrolizumab plus Chemotherapy for squamous non-small-cell Lung Cancer. N Engl J Med 379(21):2040–2051

    Article  CAS  PubMed  Google Scholar 

  11. Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for First-Line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301

    Article  CAS  PubMed  Google Scholar 

  12. Jotte R, Cappuzzo F, Vynnychenko I et al (2020) Atezolizumab in Combination with Carboplatin and Nab-Paclitaxel in Advanced squamous NSCLC (IMpower131): results from a Randomized Phase III Trial. J Thorac Oncol 15(8):1351–1360

    Article  CAS  PubMed  Google Scholar 

  13. Liao W, Lin JX, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38(1):13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malek TR, Castro I (2010) Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33(2):153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heaney ML, Golde DW (1998) Soluble receptors in human disease. J Leukoc Biol 64(2):135–146

    Article  CAS  PubMed  Google Scholar 

  16. Dejica D (2001) Serum soluble IL-2 receptor as a marker of lymphocyte activation in some autoimmune diseases. Effect of immunosuppressive therapy. Roum Arch Microbiol Immunol 60(3):183–201

    CAS  PubMed  Google Scholar 

  17. Correia O, Delgado L, Roujeau JC et al (2002) Soluble interleukin 2 receptor and interleukin 1alpha in toxic epidermal necrolysis: a comparative analysis of serum and blister fluid samples. Arch Dermatol 138(1):29–32

    Article  CAS  PubMed  Google Scholar 

  18. Gundlach E, Hoffmann MM, Prasse A et al (2016) Interleukin-2 receptor and angiotensin-converting enzyme as markers for ocular sarcoidosis. PLoS ONE 11(1):e0147258

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cabrera R, Ararat M, Cao M et al (2010) Hepatocellular carcinoma immunopathogenesis: clinical evidence for global T cell defects and an immunomodulatory role for soluble CD25 (sCD25). Dig Dis Sci 55(2):484–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindqvist CA, Christiansson LH, Simonsson B et al (2010) T regulatory cells control T-cell proliferation partly by the release of soluble CD25 in patients with B-cell malignancies. Immunology 131(3):371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pedersen AE, Lauritsen JP (2009) CD25 shedding by human natural occurring CD4 + CD25 + regulatory T cells does not inhibit the action of IL-2. Scand J Immunol 70(1):40–43

    Article  CAS  PubMed  Google Scholar 

  22. Diem S, Schmid S, Krapf M et al (2017) Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 111:176–181

    Article  PubMed  Google Scholar 

  23. Adachi Y, Tamiya A, Taniguchi Y et al (2020) Predictive factors for progression-free survival in non-small cell lung cancer patients receiving nivolumab based on performance status. Cancer Med 9(4):1383–1391

    Article  CAS  PubMed  Google Scholar 

  24. Jiang M, Peng W, Pu X et al (2020) Peripheral blood biomarkers Associated with Outcome in Non-small Cell Lung Cancer Patients treated with Nivolumab and Durvalumab Monotherapy. Front Oncol 10:913

    Article  PubMed  PubMed Central  Google Scholar 

  25. Agulló-Ortuño MT, Gómez-Martín Ó, Ponce S et al (2020) Blood predictive biomarkers for patients with non-small-cell Lung Cancer Associated with Clinical Response to Nivolumab. Clin Lung Cancer 21(1):75–85

    Article  PubMed  Google Scholar 

  26. Kazandjian D, Gong Y, Keegan P et al (2019) Prognostic value of the lung Immune Prognostic Index for Patients treated for metastatic non-small cell Lung Cancer. JAMA Oncol 5(10):1481–1485

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458

    Article  CAS  PubMed  Google Scholar 

  28. Fehniger TA, Cooper MA, Caligiuri MA (2002) Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 13(2):169–183

    Article  CAS  PubMed  Google Scholar 

  29. Rubin LA, Kurman CC, Fritz ME et al (1985) Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol 135(5):3172–3177

    Article  CAS  PubMed  Google Scholar 

  30. Bien E, Balcerska A (2008) Serum soluble interleukin 2 receptor alpha in human cancer of adults and children: a review. Biomarkers 13(1):1–26

    Article  CAS  PubMed  Google Scholar 

  31. Burton J, Kay NE (1994) Does IL-2 receptor expression and secretion in chronic B-cell leukemia have a role in down-regulation of the immune system? Leukemia 8(1):92–96

    CAS  PubMed  Google Scholar 

  32. Yang ZZ, Grote DM, Ziesmer SC et al (2011) Soluble IL-2Rα facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-hodgkin lymphoma. Blood 118(10):2809–2820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cabrera R, Ararat M, Eksioglu EA et al (2010) Influence of serum and soluble CD25 (sCD25) on regulatory and effector T-cell function in hepatocellular carcinoma. Scand J Immunol 72(4):293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Waldmann TA (1990) The multichain interleukin 2 receptor. A target for immunotherapy in lymphoma, autoimmune disorders, and organ allografts [clinical reference]. JAMA 263(2):272–274

    Article  CAS  PubMed  Google Scholar 

  35. Jobin N, Garrel D, Bernier J (2000) Increased serum-soluble interleukin-2 receptor in burn patients: characterization and effects on the immune system. Hum Immunol 61(3):233–246

    Article  CAS  PubMed  Google Scholar 

  36. Ennishi D, Yokoyama M, Terui Y et al (2009) Soluble interleukin-2 receptor retains prognostic value in patients with diffuse large B-cell lymphoma receiving rituximab plus CHOP (RCHOP) therapy. Ann Oncol 20(3):526–533

    Article  CAS  PubMed  Google Scholar 

  37. Gupta M, Stenson M, O’Byrne M et al (2016) Comprehensive serum cytokine analysis identifies IL-1RA and soluble IL-2Rα as predictors of event-free survival in T-cell lymphoma. Ann Oncol 27(1):165–172

    Article  CAS  PubMed  Google Scholar 

  38. Buccheri G, Marino P, Preatoni A et al (1991) Soluble interleukin 2 receptor in lung cancer. An indirect marker of tumor activity? Chest 99(6):1433–1437

    CAS  PubMed  Google Scholar 

  39. Lissoni P, Barni S, Rovelli F et al (1990) The biological significance of soluble interleukin-2 receptors in solid tumors. Eur J Cancer 26(1):33–36

    Article  CAS  PubMed  Google Scholar 

  40. Hellmann MD, Paz-Ares L, Bernabe Caro R et al (2019) Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. N Engl J Med 381(21):2020–2031

    Article  CAS  PubMed  Google Scholar 

  41. Paz-Ares L, Ciuleanu TE, Cobo M et al (2021) First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol 22(2):198–211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This research received no specific grant.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: TT, SK, MN. Acquisition and analysis of data and statistical analysis: TT, NY, HY, RM, SO, RT, HS, YA, RA, KU, SK, MN. Interpretation of data and drafting of the manuscript: TT, NY, HY, RM, SO, RT, HS, YA, RA, KU, SK, MS, AG, MN. Critical revision of the manuscript for important intellectual content: TT, NY, MS, AG, MN. Study supervision: MN. All authors approved the final version of the manuscript and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Makoto Nishio.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Cancer Institute Hospital, Japanese Foundation for Cancer Research (approval number 2019 − 1043).

Consent to participate

Written informed consents were obtained from all the patients.

Competing interests

Makoto Nishio received honoraria from Ono Pharmaceutical, Bristol Myers Squibb, Pfizer, Chugai Pharmaceutical, Eli Lilly, Taiho Pharmaceutical, AstraZeneca, Boehringer-Ingelheim, MSD, Novartis; and received research funding from MSD, Novartis, Ono Pharmaceutical, Chugai Pharmaceutical, Bristol Myers Squibb, Taiho Pharmaceutical, Eli Lilly, AstraZeneca, Pfizer, Astellas; and had consulting/advisory roles for Novartis, Daiichi Sankyo Healthcare, Taiho Pharmaceutical, Bristol Myers Squibb, Boehringer-ingelheim, Ono Pharmaceutical, Eli Lilly, Chugai Pharmaceutical, AstraZeneca, Merck Serono, MSD, Pfizer. Akihiko Gemma has received honoraria from Ono Pharmaceutical, Bristol Myers Squibb, Pfizer, Chugai Pharmaceutical, Taiho Pharmaceutical, Daiichi Sankyo Healthcare, KYORIN Pharmaceutical, Accuray Japan, Boehringer-ingelheim, MSD, AstraZeneca, Kyowa Kirin, Otsuka Pharmaceutical, Eisai; and received research funding from Nippon Kayaku. Masahiro Seike has received honoraria from Ono Pharmaceutical, Bristol Myers Squibb, Chugai Pharmaceutical, Eli Lilly, Taiho Pharmaceutical, AstraZeneca, Boehringer-ingelheim, MSD; and received research funding from Taiho Pharmaceutical, Chugai Pharmaceutical, Boehringer-ingelheim. Noriko Yanagitani has received honoraria from Ono Pharmaceutical, Taiho Pharmaceutical, MSD, Novartis, Bayer Yakuhin, and had consulting/advisory roles for Chugai Pharmaceutical. Ken Uchibori has received honoraria from Ono Pharmaceutical, Bristol Myers Squibb, Chugai Pharmaceutical, Eli Lilly, AstraZeneca, Boehringer-ingelheim, and had consulting/advisory roles for AstraZeneca, Chugai Pharmaceutical. Satoru Kitazono has received honoraria from Chugai Pharmaceutical Co., Ltd., MSD K.K., Bristol-Myers Squibb, ONO Pharmaceutical, AstraZeneca. All the other authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozuka, T., Yanagitani, N., Yoshida, H. et al. Soluble interleukin-2 receptor as a predictive biomarker for poor efficacy of combination treatment with anti-PD-1/PD-L1 antibodies and chemotherapy in non-small cell lung cancer patients. Invest New Drugs 41, 411–420 (2023). https://doi.org/10.1007/s10637-023-01358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01358-3

Keywords

Navigation