Skip to main content

Advertisement

Log in

A decision process for drug discovery in retinoblastoma

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Intraocular retinoblastoma treatment has changed radically over the last decade, leading to a notable improvement in ocular survival. However, eyes that relapse remain difficult to treat, as few alternative active drugs are available. More challenging is the scenario of central nervous system (CNS) metastasis, in which almost no advancements have been made. Both clinical scenarios represent an urgent need for new drugs. Using an integrated multidisciplinary approach, we developed a decision process for prioritizing drug selection for local (intravitreal [IVi], intrathecal/intraventricular [IT/IVt]), systemic, or intra-arterial chemotherapy (IAC) treatment by means of high-throughput pharmacological screening of primary cells from two patients with intraocular tumor and CNS metastasis and a thorough database search to identify clinical and biopharmaceutical data. This process identified 169 compounds to be cytotoxic; only 8 are FDA-approved, lack serious toxicities and available for IVi administration. Four of these agents could also be delivered by IT/IVt. Twelve FDA-approved drugs were identified for systemic delivery as they are able to cross the blood-brain barrier and lack serious adverse events; four drugs are of oral usage and six compounds that lack vesicant or neurotoxicity could be delivered by IAC. We also identified promising compounds in preliminary phases of drug development including inhibitors of survivin, antiapoptotic Bcl-2 family proteins, methyltransferase, and kinesin proteins. This systematic approach may be applied more broadly to prioritize drugs to be repurposed or to identify novel hits for use in retinoblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Munier FL, Beck-Popovic M, Chantada GL, Cobrinik D, Kivelä TT, Lohmann D, Maeder P, Moll AC, Carcaboso AM, Moulin A, Schaiquevich P, Bergin C, Dyson PJ, Houghton S, Puccinelli F, Vial Y, Gaillard MC, Stathopoulos C (2019) Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. “Alive, with good vision and no comorbidity”. Prog Retin Eye Res 73:100764. https://doi.org/10.1016/j.preteyeres.2019.05.005

    Article  PubMed  Google Scholar 

  2. Abramson DH, Ji X, Francis JH, Catalanotti F, Brodie SE, Habib L (2019) Intravitreal chemotherapy in retinoblastoma: expanded use beyond intravitreal seeds. Br J Ophthalmol 103:488–493. https://doi.org/10.1136/bjophthalmol-2018-312037

    Article  PubMed  Google Scholar 

  3. Francis JH, Levin AM, Zabor EC, Gobin YP, Abramson DH (2018) Ten-year experience with ophthalmic artery chemosurgery: ocular and recurrence-free survival. PLoS One 13:e0197081. https://doi.org/10.1371/journal.pone.0197081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abramson DH, Fabius AWM, Issa R, Francis JH, Marr BP, Dunkel IJ, Gobin YP (2015) Advanced unilateral retinoblastoma: the impact of ophthalmic artery chemosurgery on Enucleation rate and patient survival at MSKCC. PLoS One 10:e0145436. https://doi.org/10.1371/journal.pone.0145436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fabian ID, Abdallah E, Abdullahi SU et al (2020) Global retinoblastoma presentation and analysis by National Income Level. JAMA Oncol 6:685–695. https://doi.org/10.1001/jamaoncol.2019.6716

    Article  PubMed  Google Scholar 

  6. Canturk S, Qaddoumi I, Khetan V, Ma Z, Furmanchuk A, Antoneli CBG, Sultan I, Kebudi R, Sharma T, Rodriguez-Galindo C, Abramson DH, Chantada GL (2010) Survival of retinoblastoma in less-developed countries impact of socioeconomic and health-related indicators. Br J Ophthalmol 94:1432–1436. https://doi.org/10.1136/bjo.2009.168062

    Article  CAS  PubMed  Google Scholar 

  7. Chawla B, Hasan F, Azad R, Seth R, Upadhyay AD, Pathy S, Pandey RM (2016) Clinical presentation and survival of retinoblastoma in Indian children. Br J Ophthalmol 100:172–178

    Article  Google Scholar 

  8. Dunkel IJ, Krailo MD, Chantada GL, Banerjee A, Abouelnaga S, Buchsbaum J, Merchant TE, Granger M, Jubran RF, Kellick M, Weinstein J, Abramson DH, Rodriguez-Galindo C, Chintagumpala MM (2017) Intensive multi-modality therapy for extra-ocular retinoblastoma (RB): a Children’s oncology group (COG) trial (ARET0321). J Clin Oncol 35:10506–10506. https://doi.org/10.1200/jco.2017.35.15_suppl.10506

    Article  Google Scholar 

  9. Dunkel IJ, Chan HSL, Jubran R, Chantada GL, Goldman S, Chintagumpala M, Khakoo Y, Abramson DH (2010) High-dose chemotherapy with autologous hematopoietic stem cell rescue for stage 4b retinoblastoma. Pediatr Blood Cancer 55:149–152. https://doi.org/10.1002/pbc.22491

    Article  PubMed  Google Scholar 

  10. Abramson DH, Francis JH, Gobin YP (2019) What’s new in intra-arterial chemotherapy for retinoblastoma? Int Ophthalmol Clin 59:87–94. https://doi.org/10.1097/IIO.0000000000000266

    Article  PubMed  Google Scholar 

  11. Taich P, Ceciliano A, Buitrago E, Sampor C, Fandino A, Villasante F, Lucena E, Romero L, Chantada GL, Schaiquevich P (2014) Clinical pharmacokinetics of intra-arterial melphalan and topotecan combination in patients with retinoblastoma. Ophthalmology 121:889–897. https://doi.org/10.1016/j.ophtha.2013.10.045

    Article  PubMed  Google Scholar 

  12. Schaiquevich P, Buitrago E, Taich P, Torbidoni A, Ceciliano A, Fandino A, Asprea M, Requejo F, Abramson DH, Bramuglia GF, Chantada GL (2012) Pharmacokinetic analysis of melphalan after superselective ophthalmic artery infusion in preclinical models and retinoblastoma patients. Investig Ophthalmol Vis Sci 53:4205–4212. https://doi.org/10.1167/iovs.12-9501

    Article  CAS  Google Scholar 

  13. Schaiquevich P, Buitrago E, Ceciliano A, Fandino AC, Asprea M, Sierre S, Abramson DH, Bramuglia GF, Chantada GL (2012) Pharmacokinetic analysis of topotecan after superselective ophthalmic artery infusion and periocular administration in a porcine model. Retina 32:387–395. https://doi.org/10.1097/IAE.0b013e31821e9f8a

    Article  CAS  PubMed  Google Scholar 

  14. Pascual-Pasto G, Olaciregui NG, Vila-Ubach M, Paco S, Monterrubio C, Rodriguez E, Winter U, Batalla-Vilacis M, Catala J, Salvador H, Parareda A, Schaiquevich P, Suñol M, Mora J, Lavarino C, de Torres C, Chantada GL, Carcaboso AM (2016) Preclinical platform of retinoblastoma xenografts recapitulating human disease and molecular markers of dissemination. Cancer Lett 380:10–19. https://doi.org/10.1016/j.canlet.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  15. Ben-David U, Gan QF, Golan-Lev T, Arora P, Yanuka O, Oren YS, Leikin-Frenkel A, Graf M, Garippa R, Boehringer M, Gromo G, Benvenisty N (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12:167–179. https://doi.org/10.1016/j.stem.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  16. Aherne W, Garrett M, McDonald T, Workman P (2002) Mechanism-based high-throughput screening for novel anticancer drug discovery. In: Baguley B, Kerr D (eds) Anticancer drug development, 1st edn. Academic Press, California, pp 249–267

  17. Nimmervoll BV, Boulos N, Bianski B, Dapper J, DeCuypere M, Shelat A, Terranova S, Terhune HE, Gajjar A, Patel YT, Freeman BB, Onar-Thomas A, Stewart CF, Roussel MF, Guy RK, Merchant TE, Calabrese C, Wright KD, Gilbertson RJ (2018) Establishing a preclinical multidisciplinary board for brain tumors. Clin Cancer Res 24:1654–1666. https://doi.org/10.1158/1078-0432.CCR-17-2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zugbi S, Winter U, Castañon A et al (2019) Comparison of the pharmacological activity of idarubicin and doxorubicin for retinoblastoma. Pediatr Blood Cancer 66:e27441. https://doi.org/10.1002/pbc.27441

    Article  PubMed  Google Scholar 

  19. Winter U, Aschero R, Fuentes F, Buontempo F, Zugbi S, Sgroi M, Sampor C, Abramson D, Carcaboso A, Schaiquevich P (2019) Tridimensional retinoblastoma cultures as vitreous seeds models for live-cell imaging of chemotherapy penetration. Int J Mol Sci 20:1077. https://doi.org/10.3390/ijms20051077

    Article  CAS  PubMed Central  Google Scholar 

  20. Winter U, Ganiewich D, Ottaviani D, Zugbi S, Aschero R, Sendoya JM, Cafferata EG, Mena M, Sgroi M, Sampor C, Lubieniecki F, Fandiño A, Abba MC, Doz F, Podhjacer O, Carcaboso AM, Letouzé E, Radvanyi F, Chantada GL, Llera AS, Schaiquevich P (2020) Genomic and transcriptomic tumor heterogeneity in bilateral retinoblastoma. JAMA Ophthalmol 138:569–574. https://doi.org/10.1001/jamaophthalmol.2020.0427

    Article  PubMed  Google Scholar 

  21. Winter U, Mena HA, Negrotto S, Arana E, Pascual-Pasto G, Laurent V, Suñol M, Chantada GL, Carcaboso AM, Schaiquevich P (2016) Schedule-dependent antiangiogenic and cytotoxic effects of chemotherapy on vascular endothelial and retinoblastoma cells. PLoS One 11:e0160094. https://doi.org/10.1371/journal.pone.0160094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antczak C, Kloepping C, Radu C, Genski T, Mu¨ller-Kuhrt L, Siems K, de Stanchina E, Abramson DH, Djaballah H (2009) Revisiting old drugs as novel agents for retinoblastoma: in vitro and in vivo antitumor activity of cardenolides. Investig Ophthalmol Vis Sci 50:3065–3073. https://doi.org/10.1167/iovs.08-3158

    Article  Google Scholar 

  23. Zhang J-H (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73. https://doi.org/10.1177/108705719900400206

    Article  CAS  PubMed  Google Scholar 

  24. Zugbi S, Ganiewich D, Bhattacharyya A, Aschero R, Ottaviani D, Sampor C, Cafferata E, Mena M, Sgroi M, Winter U, Lamas G, Suñol M, Daroqui M, Baialardo E, Salas B, Das A, Fandiño A, Francis J, Lubieniecki F, Lavarino C, Garippa R, Podhajcer O, Abramson D, Radvanyi F, Chantada G, Llera A, Schaiquevich P (2020) Clinical, genomic, and pharmacological study of MYCN-amplified RB1 wild-type metastatic retinoblastoma. Cancers (Basel) 12:2714. https://doi.org/10.3390/cancers12092714

    Article  CAS  Google Scholar 

  25. Inomata M, Kaneko A (1987) Chemosensitivity profiles of primary and cultured human retinoblastoma cells in a human tumor Clonogenic assay. Jpn J Cancer Res 78:858–868

    CAS  PubMed  Google Scholar 

  26. Conroy S, Garnett M, Vloeberghs M, Grundy R, Craven I, Walker D (2010) Medulloblastoma in childhood: revisiting Intrathecal therapy in infants and children. Cancer Chemother Pharmacol 65:1173–1189. https://doi.org/10.1007/s00280-009-1127-1

    Article  PubMed  Google Scholar 

  27. Stapleton S, Blaney S (2006) New agents for Intrathecal administration. Cancer Investig 24:528–534. https://doi.org/10.1080/07357900600815166

    Article  CAS  Google Scholar 

  28. Cook AM, Mieure KD, Owen RD, Pesaturo AB, Hatton J (2009) Intracerebroventricular administration of drugs. Pharmacotherapy 29:832–845. https://doi.org/10.1592/phco.29.7.832

    Article  CAS  PubMed  Google Scholar 

  29. Motl S, Zhuang Y, Waters CM, Stewart CF (2006) Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 45:871–903. https://doi.org/10.2165/00003088-200645090-00002

    Article  CAS  PubMed  Google Scholar 

  30. Atkinson AJ (2017) Intracerebroventricular drug administration. Transl Clin Pharmacol 25:117–124. https://doi.org/10.12793/tcp.2017.25.3.117

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cunha-Vaz JG (2004) The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res 78:715–721. https://doi.org/10.1016/S0014-4835(03)00213-6

    Article  CAS  PubMed  Google Scholar 

  32. Vellonen KS, Soini EM, Del Amo EM, Urtti A (2016) Prediction of ocular drug distribution from systemic blood circulation. Mol Pharm 13:2906–2911. https://doi.org/10.1021/acs.molpharmaceut.5b00729

    Article  CAS  PubMed  Google Scholar 

  33. Abdul Razzak R, Florence GJ, Gunn-Moore FJ (2019) Approaches to CNS drug delivery with a focus on transporter-mediated Transcytosis. Int J Mol Sci 20:3108. https://doi.org/10.3390/ijms20123108

    Article  CAS  PubMed Central  Google Scholar 

  34. Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 13 Jul 2020

  35. FDA/CEDR resources page. Food and Drug Administration Web site. https://www.accessdata.fda.gov/scripts/cder/daf/. Accessed 13 Jul 2020

  36. Micromedex-Solutions (2016) In: Truven Heal. Anal. Inc. http://www.micromedexsolutions.com. Accessed 14 Jul 2020

  37. Porter R, Kaplan J Merck manual. In: Kenilworth, NJ Merck Manuals https://www.merckmanuals.com/home. Accessed 13 Jul 2020

  38. Garcia E, Calello D, Ruck B, Nelson L (2017) Abstracts from the 2017 American College of Medical Toxicology (ACMT) annual scientific meeting. J Med Toxicol 13:3–46. https://doi.org/10.1007/s13181-017-0599-3

    Article  Google Scholar 

  39. Bernardi RJ, Bomgaars L, Fox E, Balis FM, Egorin MJ, Lagattuta TF, Aikin A, Whitcomb P, Renbarger J, Lieberman FS, Berg SL, Blaney SM (2008) Phase I clinical trial of intrathecal gemcitabine in patients with neoplastic meningitis. Cancer Chemother Pharmacol 62:355–361. https://doi.org/10.1007/s00280-007-0601-x

    Article  CAS  PubMed  Google Scholar 

  40. Kreidieh FY (2016) Overview, prevention and management of chemotherapy extravasation. World J Clin Oncol 7:87–97. https://doi.org/10.5306/wjco.v7.i1.87

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dunkel IJ, Shi W, Salvaggio K, Marr BP, Brodie SE, Gobin YP, Abramson DH (2014) Risk factors for severe neutropenia following intra-arterial chemotherapy for intra-ocular retinoblastoma. PLoS One 9:e108692. https://doi.org/10.1371/journal.pone.0108692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pommepuy I, Terro F, Petit B, Trimoreau F, Bellet V, Robert S, Hugon J, Labrousse F, Yardin C (2003) Brefeldin a induces apoptosis and cell cycle blockade in Glioblastoma cell lines. Oncology 64:459–467. https://doi.org/10.1159/000070307

    Article  CAS  PubMed  Google Scholar 

  43. Larsson DE, Wickström M, Hassan S, Oberg K, Granberg D (2010) The cytotoxic agents NSC-95397, Brefeldin a, Bortezomib and Sanguinarine induce apoptosis in neuroendocrine tumors in vitro. Anticancer Res 30:149–156

    CAS  PubMed  Google Scholar 

  44. Miranda GE, Abrahan CE, Politi LE, Rotstein NP (2009) Sphingosine-1-phosphate is a key regulator of proliferation and differentiation in retina photoreceptors. Investig Ophthalmol Vis Sci 50:4416–4428. https://doi.org/10.1167/iovs.09-3388

    Article  Google Scholar 

  45. Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, Wang P, Ma X, Kroemer G, Bartlett DL, Billiar TR, Lotze MT, Zeh HJ, Kang R, Tang D (2018) JTC801 induces pH-dependent death specifically in Cancer cells and slows growth of tumors in mice. Gastroenterology 154:1480–1493. https://doi.org/10.1053/j.gastro.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  46. Li JX, Bi YP, Wang J, Yang X, Tian YF, Sun ZF (2018) JTC-801 inhibits the proliferation and metastasis of ovarian cancer cell SKOV3 through inhibition of the PI3K - AKT signaling pathway. Pharmazie 73:283–287. https://doi.org/10.1691/ph.2018.7326

    Article  CAS  PubMed  Google Scholar 

  47. Creelan BC, Gabrilovich DI, Gray JE et al (2017) Safety, pharmacokinetics, and pharmacodynamics of oral omaveloxolone (RTA408), a synthetic triterpenoid, in a first-in-human trial of patients with advanced solid tumors. Onco Targets Ther 10:4239–4250. https://doi.org/10.2147/OTT.S136992

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu X, Ward K, Xavier C, Jann J, Clark AF, Pang IH, Wu H (2016) The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol 8:98–109. https://doi.org/10.1016/j.redox.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  49. Shields M (2017) Chemotherapeutics. In: Pharmacognosy: fundamentals, applications and strategy, 1 st. Elsevier Inc., pp 295–313

  50. Di Fiore R, Drago-Ferrante R, D’Anneo A et al (2013) In human retinoblastoma Y79 cells okadaic acid-parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player. Cancer Biol Ther 14:922–931. https://doi.org/10.4161/cbt.25944

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jane EP, Premkumar DR, Sutera PA, Cavaleri JM, Pollack IF (2017) Survivin inhibitor YM155 induces mitochondrial dysfunction, autophagy, DNA damage and apoptosis in Bcl-xL silenced glioma cell lines. Mol Carcinog 56:1251–1265. https://doi.org/10.1002/mc.22587

    Article  CAS  PubMed  Google Scholar 

  52. Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS (2017) Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 22:8. https://doi.org/10.1186/s11658-017-0038-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferrario A, Luna M, Rucker N, Wong S, Lederman A, Kim J, Gomer C (2016) Targeting Survivin enhances Chemosensitivity in retinoblastoma cells and Orthotopic tumors. PLoS One 11:e0153011. https://doi.org/10.1371/journal.pone.0153011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sudhakar J, Venkatesan N, Lakshmanan S, Khetan V, Krishnakumar S, Biswas J (2013) Hypoxic tumor microenvironment in advanced retinoblastoma. Pediatr Blood Cancer 60:1598–1601. https://doi.org/10.1002/pbc.24599

    Article  PubMed  Google Scholar 

  55. Liu K, Liu Y, Zhao G (2017) Targeting survivin suppresses proliferation and invasion of retinoblastoma cells in vitro and in vivo. Int J Clin Exp Pathol 10:9352–9361

    PubMed  PubMed Central  Google Scholar 

  56. Satoh T, Okamoto I, Miyazaki M et al (2009) Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res 15:3872–3880. https://doi.org/10.1158/1078-0432.CCR-08-1946

    Article  CAS  PubMed  Google Scholar 

  57. Tolcher AW, Mita A, Lewis LD, Garrett CR, Till E, Daud AI, Patnaik A, Papadopoulos K, Takimoto C, Bartels P, Keating A, Antonia S (2008) Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol 26:5198–5203. https://doi.org/10.1200/JCO.2008.17.2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Minematsu T, Sonoda T, Hashimoto T, Iwai M, Oppeneer T, Felder L, Shirai N, Miyashita A, Usui T (2012) Pharmacokinetics, distribution and excretion of YM155 monobromide, a novel small-molecule survivin suppressant, in male and pregnant or lactating female rats. Biopharm Drug Dispos 33:160–169. https://doi.org/10.1002/bdd.1781

    Article  CAS  PubMed  Google Scholar 

  59. Campbell KJ, Tait SWG (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Biol 8:180002. https://doi.org/10.1098/rsob.180002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng SC, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681. https://doi.org/10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  61. Allaman-Pillet N, Oberson A, Munier F, Schorderet DF (2013) The Bcl-2/Bcl-XL inhibitor ABT-737 promotes death of retinoblastoma cancer cells. Ophthalmic Genet 34:1–13. https://doi.org/10.3109/13816810.2011.615077

    Article  CAS  PubMed  Google Scholar 

  62. Aubry A, Pearson JD, Huang K, Livne-bar I, Ahmad M, Jagadeesan M, Khetan V, Ketela T, Brown KR, Yu T, Lu S, Wrana JL, Moffat J, Bremner R (2020) Functional genomics identifies new synergistic therapies for retinoblastoma. Oncogene 39:5338–5357. https://doi.org/10.1038/s41388-020-1372-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paik PK, Rudin CM, Brown A, Rizvi NA, Takebe N, Travis W, James L, Ginsberg MS, Juergens R, Markus S, Tyson L, Subzwari S, Kris MG, Krug LM (2010) A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies. Cancer Chemother Pharmacol 66:1079–1085. https://doi.org/10.1007/s00280-010-1265-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schimmer AD, O’Brien S, Kantarjian H et al (2008) A phase I study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 14:8295–8301. https://doi.org/10.1158/1078-0432.CCR-08-0999

    Article  CAS  PubMed  Google Scholar 

  65. Wilson WH, O’Connor OA, Czuczman MS et al (2010) Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–1159. https://doi.org/10.1016/S1470-2045(10)70261-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaniskan HÜ, Konze KD, Jin J (2015) Selective inhibitors of protein methyltransferases. J Med Chem 58:1596–1629. https://doi.org/10.1021/jm501234a

    Article  CAS  PubMed  Google Scholar 

  67. Casciello F, Windloch K, Gannon F, Lee JS (2015) Functional role of G9a histone methyltransferase in cancer. Front Immunol 6:487. https://doi.org/10.3389/fimmu.2015.00487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu X, Gong H, Huang K (2013) Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci 104:651–656. https://doi.org/10.1111/cas.12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holen KD, Belani CP, Wilding G, Ramalingam S, Volkman JL, Ramanathan RK, Vasist LS, Bowen CJ, Hodge JP, Dar MM, Ho PTC (2011) A first in human study of SB-743921, a kinesin spindle protein inhibitor, to determine pharmacokinetics, biologic effects and establish a recommended phase II dose. Cancer Chemother Pharmacol 67:447–454. https://doi.org/10.1007/s00280-010-1346-5

    Article  CAS  PubMed  Google Scholar 

  70. Chen LC, Rosen LS, Iyengar T, Goldman JW, Savage R, Kazakin J, Chan TCK, Schwartz BE, Abbadessa G, von Hoff DD (2011) First-in-human study with ARQ 621, a novel inhibitor of Eg5: final results from the solid tumors cohort. J Clin Oncol 29:3076–3076. https://doi.org/10.1200/jco.2011.29.15_suppl.3076

    Article  Google Scholar 

  71. Bowles E, Corson TW, Bayani J, Squire JA, Wong N, Lai PBS, Gallie BL (2007) Profiling genomic copy number changes in retinoblastoma beyond loss of RB1. Genes Chromosom Cancer 46:118–129. https://doi.org/10.1002/gcc.20383

    Article  CAS  PubMed  Google Scholar 

  72. O’Hare M, Shadmand M, Sulaiman RS et al (2016) Kif14 overexpression accelerates murine retinoblastoma development. Int J Cancer 139:1752–1758. https://doi.org/10.1002/ijc.30221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karakas D, Ozpolat B (2020) Eukaryotic elongation factor-2 kinase (eEF2K) signaling in tumor and microenvironment as a novel molecular target. J Mol Med 98:775–787. https://doi.org/10.1007/s00109-020-01917-8

    Article  CAS  PubMed  Google Scholar 

  74. Wang X, Xie J, Proud C (2017) Eukaryotic elongation factor 2 kinase (eEF2K) in Cancer. Cancers (Basel) 9:162. https://doi.org/10.3390/cancers9120162

    Article  CAS  Google Scholar 

  75. Arora S, Yang J-M, Kinzy TG et al (2003) Identification and characterization of an inhibitor of eukaryotic elongation factor 2 kinase against human Cancer cell lines. Cancer Res 63:6894–6899

    CAS  PubMed  Google Scholar 

  76. Parrales A, Iwakuma T (2015) Targeting oncogenic mutant p53 for Cancer therapy. Front Oncol 5:288. https://doi.org/10.3389/fonc.2015.00288

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yu X, Blanden AR, Narayanan S et al (2014) Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget 5:8879–8892. https://doi.org/10.18632/oncotarget.2432

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shimada K, Reznik E, Stokes ME et al (2018) Copper-binding small molecule induces oxidative stress and cell-cycle arrest in Glioblastoma-patient-derived cells. Cell Chem Biol 25:585–594.e7. https://doi.org/10.1016/j.chembiol.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xia Y, Shen S, Verma IM (2014) NF- B, an active player in human cancers. Cancer Immunol Res 2:823–830. https://doi.org/10.1158/2326-6066.CIR-14-0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qu Y, Zhou F, Dai X, Wang H, Shi J, Zhang X, Wang Y, Wei W (2011) Clinicopathologic significances of nuclear expression of nuclear factor-κB transcription factors in retinoblastoma. J Clin Pathol 64:695–700. https://doi.org/10.1136/jclinpath-2011-200017

    Article  PubMed  Google Scholar 

  81. Poulaki V, Mitsiades CS, Joussen AM, Lappas A, Kirchhof B, Mitsiades N (2002) Constitutive nuclear factor-κB activity is crucial for human retinoblastoma cell viability. Am J Pathol 161:2229–2240. https://doi.org/10.1016/S0002-9440(10)64499-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jaiswal PK, Koul S, Palanisamy N, Koul HK (2019) Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1): a target for cancer therapeutic intervention? Cancer Cell Int 19:224. https://doi.org/10.1186/s12935-019-0947-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Feng Y, Pinkerton AB, Hulea L, Zhang T, Davies MA, Grotegut S, Cheli Y, Yin H, Lau E, Kim H, de SK, Barile E, Pellecchia M, Bosenberg M, Li JL, James B, Hassig CA, Brown KM, Topisirovic I, Ronai ZA (2015) SBI-0640756 attenuates the growth of clinically unresponsive melanomas by disrupting the eIF4F translation initiation complex. Cancer Res 75:5211–5218. https://doi.org/10.1158/0008-5472.CAN-15-0885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746. https://doi.org/10.1038/nrc3818

    Article  CAS  PubMed  Google Scholar 

  85. Bharadwaj U, Kasembeli MM, Tweardy DJ (2016) STAT3 inhibitors in Cancer: a comprehensive update. Humana Press, Cham, pp 95–161

    Book  Google Scholar 

  86. Jo DH, Kim JH, Cho CS et al (2014) STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters. Oncotarget 5:11513–11525. https://doi.org/10.18632/oncotarget.2546

    Article  PubMed  PubMed Central  Google Scholar 

  87. Klettner A, Westhues D, Lassen J, Bartsch S, Roider J (2013) Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: P38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol Vis 19:281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Fletcher JI, Ziegler DS, Trahair TN, Marshall GM, Haber M, Norris MD (2018) Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nat Rev Cancer 18:389–400. https://doi.org/10.1038/s41568-018-0003-x

    Article  CAS  PubMed  Google Scholar 

  89. Schellens JHM, McLeod HL, Newell DR (2005) Cancer clinical pharmacology, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  90. Laurie NA, Gray JK, Zhang J, Leggas M, Relling M, Egorin M, Stewart C, Dyer MA (2005) Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clin Cancer Res 11:7569–7578. https://doi.org/10.1158/1078-0432.CCR-05-0849

    Article  CAS  PubMed  Google Scholar 

  91. El Dareer SM, White VM, Chen FP et al (1977) Distribution and metabolism of vincristine in mice, rats, dogs, and monkeys. Cancer Treat Rep 61:1269–1277

    PubMed  Google Scholar 

  92. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, Roussel MF, Finkelstein D, Goumnerova L, Perreault S, Wadhwa E, Cho YJ, Stewart CF, Gilbertson RJ (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29:508–522. https://doi.org/10.1016/j.ccell.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jackson DV Jr, Sethi VS, Spurr CL, McWhorter JM (1981) Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res 41:1466–1468

    PubMed  Google Scholar 

  94. Green WR (1975) Retinal and optic nerve atrophy induced by intravitreous vincristine in the primate. Trans Am Ophthalmol Soc 73:389–416

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Blatt J, Farag S, Corey SJ, Sarrimanolis Z, Muratov E, Fourches D, Tropsha A, Janzen WP (2014) Expanding the scope of drug repurposing in pediatrics: the Children’s pharmacy collaborative™. Drug Discov Today 19:1696–1698. https://doi.org/10.1016/j.drudis.2014.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q (2005) Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci U S A 102:16090–16095. https://doi.org/10.1073/pnas.0505585102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dalgard CL, Van Quill KR, O’Brien JM (2008) Evaluation of the in vitro and in vivo antitumor activity of histone deacetylase inhibitors for the therapy of retinoblastoma. Clin Cancer Res 14:3113–3123. https://doi.org/10.1158/1078-0432.CCR-07-4836

    Article  CAS  PubMed  Google Scholar 

  98. Winter U, Buitrago E, Mena HA, del Sole MJ, Laurent V, Negrotto S, Francis J, Arana E, Sgroi M, Croxatto JO, Djaballah H, Chantada GL, Abramson D, Schaiquevich P (2015) Pharmacokinetics, safety, and efficacy of intravitreal digoxin in preclinical models for retinoblastoma. Investig Ophthalmol Vis Sci 56:4382–4393. https://doi.org/10.1167/iovs.14-16239

    Article  CAS  Google Scholar 

  99. Kofler B, Romani A, Pritz C et al (2018) Photodynamic effect of methylene blue and low level laser radiation in head and neck squamous cell carcinoma cell lines. Int J Mol Sci 19:1107. https://doi.org/10.3390/ijms19041107

    Article  CAS  PubMed Central  Google Scholar 

  100. Lim EJ, Oak CH, Heo J, Kim YH (2013) Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells. Oncol Rep 30:856–862. https://doi.org/10.3892/or.2013.2494

    Article  CAS  PubMed  Google Scholar 

  101. Tardivo JP, Del Giglio A, De Oliveira CS et al (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn Photodyn Ther 2:175–191. https://doi.org/10.1016/S1572-1000(05)00097-9

    Article  CAS  Google Scholar 

  102. Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A (2019) Improving the brain delivery of chemotherapeutic drugs in childhood brain tumors. Cancers (Basel) 11:824. https://doi.org/10.3390/cancers11060824

    Article  CAS  Google Scholar 

  103. Dimaras H, Hon E, Budning A et al (2009) Retinoblastoma CSF metastasis cured by multimodality chemotherapy without radiation. Ophthalmic Genet 30:121–126. https://doi.org/10.1080/13816810902988780

    Article  CAS  PubMed  Google Scholar 

  104. Blaney SM, Tagen M, Onar-Thomas A, Berg SL, Gururangan S, Scorsone K, Su J, Goldman S, Kieran MW, Kun L, Boyett J, Stewart C (2013) A phase-1 pharmacokinetic optimal dosing study of intraventricular topotecan for children with neoplastic meningitis: a pediatric brain tumor consortium study. Pediatr Blood Cancer 60:627–632. https://doi.org/10.1002/pbc.24309

    Article  CAS  PubMed  Google Scholar 

  105. Berg S, Balis FM, McCully CL, Poplack DC (1994) Re: toxicity of Intrathecal Melphalan. JNCI 86:463–463. https://doi.org/10.1093/jnci/86.6.463

    Article  CAS  PubMed  Google Scholar 

  106. Fleischhack G, Reif S, Hasan C, Jaehde U, Hettmer S, Bode U (2001) Feasibility of intraventricular administration of etoposide in patients with metastatic brain tumours. Br J Cancer 84:1453–1459. https://doi.org/10.1054/bjoc.2001.1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Aguado V, Lovett D, Meijer L et al (2017) Intrathecal administration of etoposide: a review of current literature and expert opinion | Document summary | Evidence search | NICE. https://www.evidence.nhs.uk/document?id=1620070&returnUrl=Search%3Fps%3D50%26q%3DCerebrospinal%2Bfluid&q=Cerebrospinal+fluid. Accessed 10 Jul 2020

  108. Sampor C, Correa Llanos MG, Oller A, et al (2019) Intrathecal Topotecan as part of retinoblastoma treatment. In: Pediatric Blood & Cancer. NLM (Medline), p e27989

  109. Laurent VE, Torbidoni AV, Sampor C, Ottaviani D, Vazquez V, Gabri MR, Garcia de Davila MT, Ramirez-Ortiz MA, Alonso CN, Rossi J, Alonso DF, Chantada GL (2016) Minimal disseminated disease in nonmetastatic retinoblastoma with high-risk pathologic features and association with disease-free survival. JAMA Ophthalmol 134:1374–1379. https://doi.org/10.1001/jamaophthalmol.2016.4158

    Article  PubMed  Google Scholar 

  110. Sandberg DI, Kharas N, Yu B, Janssen CF, Trimble A, Ballester LY, Patel R, Mohammad AS, Elmquist WF, Sirianni RW (2020) High-dose MTX110 (soluble panobinostat) safely administered into the fourth ventricle in a nonhuman primate model. J Neurosurg Pediatr 1:1–9. https://doi.org/10.3171/2020.2.peds19786

    Article  Google Scholar 

  111. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, Reid JM, Ames MM, Speights R, Ingle AM, Zwiebel J, Blaney SM, Adamson PC (2010) Pediatric phase I trial and pharmacokinetic study of vorinostat: a children’s oncology group phase I consortium report. J Clin Oncol 28:3623–3629. https://doi.org/10.1200/JCO.2009.25.9119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pinto N, DuBois SG, Marachelian A et al (2018) Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: a new approaches to Neuroblastoma therapy (NANT) trial. Pediatr Blood Cancer 65:e27023. https://doi.org/10.1002/pbc.27023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Muscal JA, Thompson PA, Horton TM, Ingle AM, Ahern CH, McGovern RM, Reid JM, Ames MM, Espinoza-Delgado I, Weigel BJ, Blaney SM (2013) A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s oncology group phase I consortium study (ADVL0916). Pediatr Blood Cancer 60:390–395. https://doi.org/10.1002/pbc.24271

    Article  CAS  PubMed  Google Scholar 

  114. Meel MH, de Gooijer MC, Metselaar DS, Sewing ACP, Zwaan K, Waranecki P, Breur M, Buil LCM, Lagerweij T, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero Carcaboso Á, Bugiani M, Phoenix TN, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E (2020) Combined therapy of AXL and HDAC inhibition reverses Mesenchymal transition in diffuse intrinsic Pontine Glioma. Clin Cancer Res 26:3319–3332. https://doi.org/10.1158/1078-0432.ccr-19-3538

    Article  CAS  PubMed  Google Scholar 

  115. Noonan AM, Eisch RA, Liewehr DJ, Sissung TM, Venzon DJ, Flagg TP, Haigney MC, Steinberg SM, Figg WD, Piekarz RL, Bates SE (2013) Electrocardiographic studies of romidepsin demonstrate its safety and identify a potential role for KATP channel. Clin Cancer Res 19:3095–3104. https://doi.org/10.1158/1078-0432.CCR-13-0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Berg SL, Stone J, Xiao JJ, Chan KK, Nuchtern J, Dauser R, McGuffey L, Thompson P, Blaney SM (2004) Plasma and cerebrospinal fluid pharmacokinetics of depsipeptide (FR901228) in nonhuman primates. Cancer Chemother Pharmacol 54:85–88. https://doi.org/10.1007/s00280-004-0766-5

    Article  CAS  PubMed  Google Scholar 

  117. Fouladi M, Furman WL, Chin T et al (2006) Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a children’s oncology group report. J Clin Oncol 24:3678–3685. https://doi.org/10.1200/JCO.2006.06.4964

    Article  CAS  PubMed  Google Scholar 

  118. Kent LN, Leone G (2019) The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer 19:326–338. https://doi.org/10.1038/s41568-019-0143-7

    Article  CAS  PubMed  Google Scholar 

  119. Attiyeh EF, Maris JM, Lock R, Reynolds CP, Kang MH, Carol H, Gorlick R, Kolb EA, Keir ST, Wu J, Landesman Y, Shacham S, Lyalin D, Kurmasheva RT, Houghton PJ, Smith MA (2016) Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPT-330): a report from the pediatric preclinical testing program. Pediatr Blood Cancer 63:276–286. https://doi.org/10.1002/pbc.25727

    Article  CAS  PubMed  Google Scholar 

  120. Alexander TB, Lacayo NJ, Choi JK, Ribeiro RC, Pui CH, Rubnitz JE (2016) Phase I study of selinexor, a selective inhibitor of nuclear export, in combination with fludarabine and cytarabine, in pediatric relapsed or refractory acute leukemia. J Clin Oncol 34:4094–4101. https://doi.org/10.1200/JCO.2016.67.5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsoli M, Wadham C, Pinese M, Failes T, Joshi S, Mould E, Yin JX, Gayevskiy V, Kumar A, Kaplan W, Ekert PG, Saletta F, Franshaw L, Liu J, Gifford A, Weber MA, Rodriguez M, Cohn RJ, Arndt G, Tyrrell V, Haber M, Trahair T, Marshall GM, McDonald K, Cowley MJ, Ziegler DS (2018) Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer. Cancer Biol Ther 19:1078–1087. https://doi.org/10.1080/15384047.2018.1491498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Russo A, Paret C, Alt F, Burhenne J, Fresnais M, Wagner W, Glaser M, Bender H, Huprich S, Harter PN, Filipski K, Lehmann N, Backes N, Roth L, Seidmann L, Sommer C, Brockmann MA, Pietsch T, Neu MA, Wingerter A, Faber J (2019) Ceritinib-induced regression of an insulin-like growth factor-driven neuroepithelial brain tumor. Int J Mol Sci 20:4267. https://doi.org/10.3390/ijms20174267

    Article  CAS  PubMed Central  Google Scholar 

  123. De Pas T, Pala L, Catania C, Conforti F (2017) Molecular and clinical features of second-generation anaplastic lymphoma kinase inhibitors: Ceritinib. Future Oncol 13:2629–2644. https://doi.org/10.2217/fon-2017-0262

    Article  CAS  PubMed  Google Scholar 

  124. Lodhia KA, Tienchaiananda P, Haluska P (2015) Understanding the key to targeting the IGF Axis in Cancer: a biomarker assessment. Front Oncol 5:142. https://doi.org/10.3389/fonc.2015.00142

    Article  PubMed  PubMed Central  Google Scholar 

  125. Giuliano M, Vento R, Lauricella M, Calvaruso G, Carabillo' M, Tesoriere G (1996) Role of insulin-like growth factors in Autocrine growth of human retinoblastoma Y79 cells. Eur J Biochem 236:523–532. https://doi.org/10.1111/j.1432-1033.1996.00523.x

    Article  CAS  PubMed  Google Scholar 

  126. Zhang Y, Simpson-Durand CD, Standifer KM (2015) Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. Br J Pharmacol 172:571–582. https://doi.org/10.1111/bph.12701

    Article  CAS  PubMed  Google Scholar 

  127. Reisman SA, Gahir SS, Lee CYI, Proksch JW, Sakamoto M, Ward KW (2019) Pharmacokinetics and pharmacodynamics of the novel NrF2 activator omaveloxolone in primates. Drug Des Devel Ther 13:1259–1270. https://doi.org/10.2147/DDDT.S193889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dong L, Qiao H, Zhang X, Zhang X, Wang C, Wang L, Cui L, Zhao J, Xing Y, Li Y, Liu Z, Zhu C (2013) Parthenolide is Neuroprotective in rat experimental stroke model: Downregulating NF-ΚB, Phospho-P38MAPK, and Caspase-1 and ameliorating BBB permeability. Mediat Inflamm 2013:370804–370810. https://doi.org/10.1155/2013/370804

    Article  CAS  Google Scholar 

  129. Franken B, van de Donk NWCJ, Cloos JC, Zweegman S, Lokhorst HM (2016) A clinical update on the role of carfilzomib in the treatment of relapsed or refractory multiple myeloma. Ther Adv Hematol 7:330–344. https://doi.org/10.1177/2040620716667275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ailawadhi S, Sexton R, Lentzsch S, Abidi MH, Voorhees PM, Cohen AD, Rohren EM, Heitner S, Kelly K, Mackler NJ, Baer DM, Hoering A, Durie B, Orlowski RZ (2020) Low-dose versus high-dose Carfilzomib with dexamethasone (S1304) in patients with relapsed-refractory multiple myeloma. Clin Cancer Res 26:3969–3978. https://doi.org/10.1158/1078-0432.CCR-19-1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Allen PB, Lechowicz MJ (2018) Hematologic toxicity is rare in relapsed patients treated with belinostat: a systematic review of belinostat toxicity and safety in peripheral T-cell lymphomas. Cancer Manag Res 10:6731–6742. https://doi.org/10.2147/CMAR.S149241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Maximiliano Distefano, Hospital de Pediatria JP Garrahan (Argentina) for technical support.

Availability of data and materials

All data generated or analyzed during this study are included in this article.

Funding

This work was supported by Fund for Ophthalmic Knowledge, NY, USA; Fundación Natalie Dafne Flexer de Ayuda al Niño con Cancer, Argentina; Fundación Bunge y Born, Argentina; Fondation Nelia et Amadeo Barletta; National Agency for Science and Technology Promotion (PIDC 2014–0043; PICT 2016–1505), Argentina; and by NIH/NCI Cancer Center Support Grant P30 CA008748 to Memorial Sloan Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

conceptualization: DA, JF, RG, GCH, PS; classification process: BC, CS, MS, GCH, PS; cell culture: BC, SZ, UW, LM, RA; high-throughput screening: RG, SZ; patient treatment and clinical assessments: CS, MS, GCH, JF, DA; data analysis: BC, UW, SZ, RG, PS.

All authors significantly contributed to the design of the study, to the interpretation of the data and to the writing and editing.

Corresponding author

Correspondence to Paula Schaiquevich.

Ethics declarations

Conflicts of interest/competing interests

All authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancela, M.B., Zugbi, S., Winter, U. et al. A decision process for drug discovery in retinoblastoma. Invest New Drugs 39, 426–441 (2021). https://doi.org/10.1007/s10637-020-01030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-01030-0

Keywords

Navigation