Skip to main content

Advertisement

Log in

The anti-malaria agent artesunate exhibits cytotoxic effects in primary effusion lymphoma

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Primary effusion lymphoma (PEL), caused by Kaposi’s sarcoma-associated herpesvirus (KSHV), presents as a lymphomatous effusion in body cavities and has a poor prognosis. The anti-malaria drug, artesunate, possesses anti-neoplastic potential. Therefore, we aimed to investigate its effect on KSHV-infected PEL cell lines. Artesunate inhibited cell growth and viability of PEL cells, but its effect on peripheral blood mononuclear cells was less pronounced. Artesunate induced G1 phase arrest by downregulating cyclin D1/D2, CDK2/6 and c-Myc. Artesunate increased reactive oxygen species and DNA damage, but did not affect the expression of latent and lytic genes of KSHV. It exhibited cytotoxicity through caspase-dependent and -independent pathways and reduced Bcl-xL, survivin, XIAP and c-IAP1/2 levels. Furthermore, artesunate suppressed NF-κB and AP-1 by inhibiting IκB kinase and IκBα phosphorylation as well as JunB expression. Finally, artesunate treatment attenuated PEL development in mice. Our data support that artesunate is a potential drug for PEL treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shimada K, Hayakawa F, Kiyoi H (2018) Biology and management of primary effusion lymphoma. Blood 132:1879–1888

    Article  CAS  Google Scholar 

  2. Okada S, Goto H, Yotsumoto M (2014) Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res 3:65–74

    Article  Google Scholar 

  3. Efferth T (2017) From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 46:65–83

    Article  CAS  Google Scholar 

  4. Konstat-Korzenny E, Ascencio-Aragón JA, Niezen-Lugo S, Vázquez-López R (2018) Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med Sci (Basel) 6:19

    Google Scholar 

  5. Krishna S, Ganapathi S, Ster IC, Saeed MEM, Cowan M, Finlayson C, Kovacsevics H, Jansen H, Kremsner PG, Efferth T, Kumar D (2014) A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2:82–90

    Article  Google Scholar 

  6. von Hagens C, Walter-Sack I, Goeckenjan M, Osburg J, Storch-Hagenlocher B, Sertel S, Elsässer M, Remppis BA, Edler L, Munzinger J, Efferth T, Schneeweiss A, Strowitzki T (2017) Prospective open uncontrolled phase I study to define a well-tolerated dose of oral artesunate as add-on therapy in patients with metastatic breast cancer (ARTIC M33/2). Breast Cancer Res Treat 164:359–369

    Article  Google Scholar 

  7. von Hagens C, Walter-Sack I, Goeckenjan M, Storch-Hagenlocher B, Sertel S, Elsässer M, Remppis BA, Munzinger J, Edler L, Efferth T, Schneeweiss A, Strowitzki T (2019) Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine 54:140–148

    Article  Google Scholar 

  8. Deeken JF, Wang H, Hartley M, Cheema AK, Smaglo B, Hwang JJ, He AR, Weiner LM, Marshall JL, Giaccone G, Liu S, Luecht J, Spiegel JY, Pishvaian MJ (2018) A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 81:587–596

    Article  CAS  Google Scholar 

  9. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996) Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346

    Article  CAS  Google Scholar 

  10. Katano H, Hoshino Y, Morishita Y, Nakamura T, Satoh H, Iwamoto A, Herndier B, Mori S (1999) Establishing and characterizing a CD30-positive cell line harboring HHV-8 from a primary effusion lymphoma. J Med Virol 58:394–401

    Article  CAS  Google Scholar 

  11. Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44:1299–1305

    Article  CAS  Google Scholar 

  12. Zhang C, Ao Z, Seth A, Schlossman SF (1996) A mitochondrial membrane protein defined by a novel monoclonal antibody is preferentially detected in apoptotic cells. J Immunol 157:3980–3987

    CAS  PubMed  Google Scholar 

  13. Mori N, Prager D (1996) Transactivation of the interleukin-1α promoter by human T-cell leukemia virus type I and type II tax proteins. Blood 87:3410–3417

    Article  CAS  Google Scholar 

  14. Vanlangenakker N, Vanden Berghe T, Vandenabeele P (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ 19:75–86

    Article  CAS  Google Scholar 

  15. Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  Google Scholar 

  16. Florean C, Song S, Dicato M, Diederich M (2019) Redox biology of regulated cell death in cancer: a focus on necroptosis and ferroptosis. Free Radic Biol Med 134:177–189

    Article  CAS  Google Scholar 

  17. Mah L-J, El-Osta A, Karagiannis TC (2010) γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686

    Article  CAS  Google Scholar 

  18. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  Google Scholar 

  19. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:6853–6866

    Article  CAS  Google Scholar 

  20. Verzella D, Pescatore A, Capece D, Vecchiotti D, Ursini MV, Franzoso G, Alesse E, Zazzeroni F (2020) Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 11:210

    Article  Google Scholar 

  21. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  CAS  Google Scholar 

  22. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    Article  CAS  Google Scholar 

  23. Iwanaga R, Ohtani K, Hayashi T, Nakamura M (2001) Molecular mechanism of cell cycle progression induced by the oncogene product tax of human T-cell leukemia virus type I. Oncogene 20:2055–2067

    Article  CAS  Google Scholar 

  24. Kawakami H, Tomita M, Matsuda T, Ohta T, Tanaka Y, Fujii M, Hatano M, Tokuhisa T, Mori N (2005) Transcriptional activation of survivin through the NF-κB pathway by human T-cell leukemia virus type I tax. Int J Cancer 115:967–974

    Article  CAS  Google Scholar 

  25. Wang C-Y, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  CAS  Google Scholar 

  26. Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52

    Article  CAS  Google Scholar 

  27. Wen KW, Damania B (2010) Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer Lett 289:140–150

    Article  CAS  Google Scholar 

  28. An J, Sun Y, Sun R, Rettig MB (2003) Kaposi's sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-κB and JNK/AP1pathways. Oncogene 22:3371–3385

    Article  CAS  Google Scholar 

  29. Kariya R, Taura M, Suzu S, Kai H, Katano H, Okada S (2014) HIV protease inhibitor lopinavir induces apoptosis of primary effusion lymphoma cells via suppression of NF-κB pathway. Cancer Lett 342:52–59

    Article  CAS  Google Scholar 

  30. Michai M, Goto H, Hattori S, Vaeteewoottacharn K, Wongkham C, Wongkham S, Okada S (2012) Soluble CD30: a possible serum tumor marker for primary effusion lymphoma. Asian Pac J Cancer Prev 13:4939–4941

    Article  Google Scholar 

  31. Granato M, Santarelli R, Gonnella R, Farina A, Trivedi P, Faggioni A, Cirone M (2015) Targeting of prosurvival pathways as therapeutic approaches against primary effusion lymphomas: past, present, and future. Biomed Res Int 2015:104912

    Article  Google Scholar 

  32. Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R (2003) NF-κB inhibits gammaherpesvirus lytic replication. J Virol 77:8532–8540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Harutaka Katano (National Institute of Infectious Diseases) for providing BCBL-1 and TY-1 cells. The authors thank Editage (www.editage.jp) for English language editing.

Funding

This study was partially supported by JSPS KAKENHI (17 K07175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Mori.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Ethical approval

All animal experiments were approved by the Animal Care and Use Committee of the University of the Ryukyus (A2017175).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, C., Mori, N. The anti-malaria agent artesunate exhibits cytotoxic effects in primary effusion lymphoma. Invest New Drugs 39, 111–121 (2021). https://doi.org/10.1007/s10637-020-00996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-020-00996-1

Keywords

Navigation