Skip to main content
Log in

Cyclodextrin polymers decorated with RGD peptide as delivery systems for targeted anti-cancer chemotherapy

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Polymeric cyclodextrin–based nanoparticles are currently undergoing clinical trials as nanotherapeutics. Using a non-covalent approach, we decorated two cross-linked cyclodextrin polymers of different molecular weights with an RGD peptide derivative to construct a novel carrier for the targeted delivery of doxorubicin. RGD is the binding sequence for the integrin receptor family that is highly expressed in tumour tissues. The assembled host–guest systems were investigated using NMR and DLS techniques. We found that, in comparison with free doxorubicin or the binary complex doxorubicin/cyclodextrin polymer, the RGD units decorating the cyclodextrin-based nanosystems improved the selectivity and cytotoxicity of the complexed doxorubicin towards cultured human tumour cell lines. Our results suggest that the nanocarriers under study may contribute to the development of new platforms for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6. https://doi.org/10.1016/j.addr.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Gallego-Yerga L, Benito JM, Blanco-Fernández L et al (2018) Plasmid-templated control of DNA–cyclodextrin nanoparticle morphology through molecular vector design for effective gene delivery. Chem Eur J 24:3825–3835. https://doi.org/10.1002/chem.201705723

    Article  CAS  PubMed  Google Scholar 

  3. Chinen AB, Guan CM, Ferrer JR et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574. https://doi.org/10.1021/acs.chemrev.5b00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spicer CD, Jumeaux C, Gupta B, Stevens MM (2018) Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 47:3574–3620. https://doi.org/10.1039/c7cs00877e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Velpurisiva P, Gad A, Piel B et al (2017) Nanoparticle design strategies for effective cancer immunotherapy. J Biomed 2:64–77. https://doi.org/10.7150/jbm.18877

    Article  Google Scholar 

  6. Xiao Z, Levy-Nissenbaum E, Alexis F et al (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6:696–704. https://doi.org/10.1021/nn204165v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Danhier F, Le BA, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973. https://doi.org/10.1021/mp3002733

    Article  CAS  PubMed  Google Scholar 

  8. Zhu X, Xiao S, Zhou D et al (2018) Design, synthesis and biological evaluation of water-soluble per-O-methylated cyclodextrin-C60 conjugates as anti-influenza virus agents. Eur J Med Chem 146:194–205. https://doi.org/10.1016/j.ejmech.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  9. Bonnet V, Gervaise C, Djedaïni-Pilard F et al (2015) Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov Today 20:1120–1126

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Sun J, Chen Q et al (2012) Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials 33:6877–6888. https://doi.org/10.1016/j.biomaterials.2012.06.019

    Article  CAS  PubMed  Google Scholar 

  11. De Barros SDT, Senra JD, Tinoco LW et al (2016) Characterization of a ternary system based on hybrid nanoparticles. J Nanosci Nanotechnol 16:2822–2831. https://doi.org/10.1166/jnn.2016.11771

    Article  CAS  PubMed  Google Scholar 

  12. Mejia-Ariza R, Graña-Suárez L, Verboom W, Huskens J (2017) Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B 5:36–52

    Article  CAS  Google Scholar 

  13. Caldera F, Tannous M, Cavalli R et al (2017) Evolution of cyclodextrin nanosponges. Int J Pharm 531:470–479. https://doi.org/10.1016/j.ijpharm.2017.06.072

    Article  CAS  PubMed  Google Scholar 

  14. Cutrone G, Casas-Solvas JM, Vargas-Berenguel A (2017) Cyclodextrin-modified inorganic materials for the construction of nanocarriers. Int J Pharm 531:621–639. https://doi.org/10.1016/j.ijpharm.2017.06.080

    Article  CAS  PubMed  Google Scholar 

  15. Oliveri V, Vecchio G (2018) Cyclodextrin-based nanoparticles in Organic materials as smart nanocarriers for drug delivery, pp 619–658. https://doi.org/10.1016/B978-0-12-813663-8.00015-4, Elsevier 2018.

  16. Gidwani B, Vyas A (2014) Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B Biointerfaces 114:130–137

    Article  CAS  PubMed  Google Scholar 

  17. Giglio V, Viale M, Bertone V et al (2018) Cyclodextrin polymers as nanocarriers for sorafenib. Investig New Drugs 36:370–379. https://doi.org/10.1007/s10637-017-0538-9

    Article  CAS  Google Scholar 

  18. Giglio V, Sgarlata C, Vecchio G (2015) Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv 5:16664–16671. https://doi.org/10.1039/c4ra16064a

    Article  CAS  Google Scholar 

  19. Anand R, Malanga M, Manet I et al (2013) Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12:1841–1854. https://doi.org/10.1039/c3pp50169h

    Article  CAS  PubMed  Google Scholar 

  20. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717

    Article  CAS  PubMed  Google Scholar 

  21. Giglio V, Bellia F, Oliveri V, Vecchio G (2016) Aminocyclodextrin oligomers as protective agents of protein aggregation. Chempluschem 81:660–665. https://doi.org/10.1002/cplu.201600239

    Article  CAS  Google Scholar 

  22. Davis ME, Zuckerman JE, Choi CHJ et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liao R, Zhao Y, Liao X et al (2015) Folic acid-polyamine-β-cyclodextrin for targeted delivery of scutellarin to cancer cells. Polym Adv Technol 26:487–494. https://doi.org/10.1002/pat.3477

    Article  CAS  Google Scholar 

  24. Giglio V, Viale M, Monticone M et al (2016) Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 6:12461–12466. https://doi.org/10.1039/c5ra22398a

    Article  CAS  Google Scholar 

  25. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39:235–249. https://doi.org/10.1016/j.progpolymsci.2013.09.006

    Article  CAS  Google Scholar 

  26. Eitan R, Fishman A, Meirovitz M et al (2014) Liposome-encapsulated doxorubicin citrate (Myocet) for treatment of recurrent epithelial ovarian cancer: a retrospective analysis. Anti-Cancer Drugs 25:101–105. https://doi.org/10.1097/CAD.0000000000000023

    Article  CAS  PubMed  Google Scholar 

  27. Mohammad N, Vikram Singh S, Malvi P et al (2015) Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: involvement of p53 and Fas receptor ligand complex. Sci Rep 5:11853. https://doi.org/10.1038/srep11853

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun Y, Kang C, Liu F et al (2017) RGD peptide-based target drug delivery of doxorubicin nanomedicine. Drug Dev Res 78:283–291. https://doi.org/10.1002/ddr.21399

    Article  CAS  PubMed  Google Scholar 

  30. Nieberler M, Reuning U, Reichart F et al (2017) Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel) 9:116. https://doi.org/10.3390/cancers9090116

    Article  CAS  Google Scholar 

  31. Wang F, Li Y, Shen Y et al (2013) The functions and applications of RGD in tumor therapy and tissue engineering. Int J Mol Sci 14:13447–13462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oliveri V, Grasso GI, Bellia F et al (2015) Soluble sugar-based quinoline derivatives as new antioxidant modulators of metal-induced amyloid aggregation. Inorg Chem 54:2591–2602. https://doi.org/10.1021/ic502713f

    Article  CAS  PubMed  Google Scholar 

  33. Wang K, Liu Y, Li C et al (2013) Cyclodextrin-responsive micelles based on poly(ethylene glycol)-polypeptide hybrid copolymers as drug carriers. ACS Macro Lett 2:201–205. https://doi.org/10.1021/mz300568b

    Article  CAS  Google Scholar 

  34. Viale M, Giglio V, Monticone M et al (2017) New doxorubicin nanocarriers based on cyclodextrins. Investig New Drugs 35:539–544. https://doi.org/10.1007/s10637-017-0461-0

    Article  CAS  Google Scholar 

  35. Oliveri V, Bellia F, Viale M et al (2017) Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym 177:355–360. https://doi.org/10.1016/j.carbpol.2017.08.103

    Article  CAS  PubMed  Google Scholar 

  36. Goodman SL, Grote HJ, Wilm C (2012) Matched rabbit monoclonal antibodies against v-series integrins reveal a novel v 3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open 1:329–340. https://doi.org/10.1242/bio.2012364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferlemann FC, Menon V, Condurat AL et al (2017) Surface marker profiling of SH-SY5Y cells enables small molecule screens identifying BMP4 as a modulator of neuroblastoma differentiation. Sci Rep 7:13612. https://doi.org/10.1038/s41598-017-13497-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from Università degli Studi di Catania (Piano della Ricerca di Ateneo 2016-2018) and the Italian Ministero dell’Università e della Ricerca. Training grant PO FSE 2014-2020 (Tosto R.) is also gratefully acknowledged.

Funding

This study was funded by Università degli Studi di Catania (Piano della Ricerca di Ateneo 2016-2018) and PO FSE 2014-2020 (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Pappalardo or Graziella Vecchio.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare that they have no conflict of interest.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viale, M., Tosto, R., Giglio, V. et al. Cyclodextrin polymers decorated with RGD peptide as delivery systems for targeted anti-cancer chemotherapy. Invest New Drugs 37, 771–778 (2019). https://doi.org/10.1007/s10637-018-0711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0711-9

Keywords

Navigation