Skip to main content

Advertisement

Log in

Cribrostatin 6 induces death in cancer cells through a reactive oxygen species (ROS)-mediated mechanism

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Cribrostatin 6 is a quinone-containing natural product that induces the death of cancer cell lines in culture, and its mechanism of action and scope of activity are unknown. Here we show that cribrostatin 6 has broad anticancer activity, potently inducing apoptotic cell death that is not preceded by any defined cell cycle arrest. Consistent with this data, we find that cribrostatin 6 treated cells have large amounts of reactive oxygen species (ROS) and, based on transcript profiling experiments and other data, this ROS generation is likely the primary mechanism by which cribrostatin 6 induces apoptosis. Given the success of certain ROS producers as anticancer agents, cribrostatin 6 has potential as a novel chemotherapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466–468

    Article  PubMed  CAS  Google Scholar 

  2. Begleiter A (1983) Cytocidal action of the quinone group and its relationship to antitumor activity. Cancer Res 43:481–484

    PubMed  CAS  Google Scholar 

  3. Bolzan AD, Bianchi MS (2001) Genotoxicity of streptonigrin: a review. Mutat Res 488:25–37

    Article  PubMed  CAS  Google Scholar 

  4. Li V-S, Choi D, Tang M, Kohn H (1996) Concerning in vitro mitomycin-DNA alkylation. J Am Chem Soc 118:3765–3766

    Article  CAS  Google Scholar 

  5. Le SB, Hailer MK, Buhrow S et al (2007) Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282:8860–8872

    Article  PubMed  CAS  Google Scholar 

  6. Lu HR, Zhu H, Huang M et al (2005) Reactive oxygen species elicit apoptosis by concurrently disrupting topoisomerase II and DNA-dependent protein kinase. Mol Pharmacol 68:983–994

    Article  PubMed  CAS  Google Scholar 

  7. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  PubMed  CAS  Google Scholar 

  8. Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT (2003) Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci 73:2047–2058

    Article  PubMed  CAS  Google Scholar 

  9. Swift LP, Rephaeli A, Nudelman A, Phillips DR, Cutts SM (2006) Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res 66:4863–4871

    Article  PubMed  CAS  Google Scholar 

  10. Coldwell KE, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR (2008) Detection of adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant adriamycin concentrations. Nucleic Acids Res 36:e100

    Article  PubMed  Google Scholar 

  11. Belcourt MF, Penketh PG, Hodnick WF et al (1999) Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA. Proc Natl Acad Sci USA 96:10489–10494

    Article  PubMed  CAS  Google Scholar 

  12. Pettit GR, Collins JC, Herald DL et al (1992) Isolation and structure of cribrostatins 1 and 2 from the blue marine sponge Cribrochalina sp. Can J Chem 70:1170–1175

    Article  CAS  Google Scholar 

  13. Pettit GR, Collins JC, Knight JC et al (2003) Antineoplastic agents. 485. Isolation and structure of cribrostatin 6, a dark blue cancer cell growth inhibitor from the marine sponge Cribrochalina sp. J Nat Prod 66:544–547

    Article  PubMed  CAS  Google Scholar 

  14. Pettit GR, Knight JC, Collins JC et al (2000) Antineoplastic agents 430. Isolation and structure of cribrostatins 3, 4, and 5 from the republic of maldives cribrochalina species. J Nat Prod 63:793–798

    Article  PubMed  CAS  Google Scholar 

  15. Sandoval IT, Davis RA, Bugni TS, Concepcion GP, Harper MK, Ireland CM (2004) Cytotoxic isoquinoline quinones from sponges of the genus Petrosia. Nat Prod Res 18:89–93

    Article  PubMed  CAS  Google Scholar 

  16. Nakahara S, Kubo A, Mikami Y, Ito J (2006) Synthesis of cribrostatin 6 and its related compounds. Heterocycles 68:515–520

    Article  CAS  Google Scholar 

  17. Pettit RK, Fakoury BR, Knight JC et al (2004) Antibacterial activity of the marine sponge constituent cribrostatin 6. J Med Microbiol 53:61–65

    Article  PubMed  CAS  Google Scholar 

  18. Nakahara S, Kubo A (2004) Synthesis of cribrostatin 6. Heterocycles 63:2355–2362

    Article  CAS  Google Scholar 

  19. Nakahara S, Kubo A (2003) Catalytic hydrogenation of 8-acyloxy-1-cyanoisoquinoline and synthesis of 9-methoxy-9-deethoxy-cribrostatin 6. Heterocycles 60:2717–2725

    Article  CAS  Google Scholar 

  20. Markey MD, Kelly TR (2008) Synthesis of cribrostatin 6. J Org Chem 73:7441–7443

    Article  PubMed  CAS  Google Scholar 

  21. Knueppel D, Martin SF (2009) Total synthesis of cribrostatin 6. Angew Chem Int Ed Engl 48:2569–2571

    Article  PubMed  CAS  Google Scholar 

  22. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  PubMed  CAS  Google Scholar 

  23. McGrath T, Center MS (1988) Mechanisms of multidrug resistance in HL60 cells: evidence that a surface membrane protein distinct from P-glycoprotein contributes to reduced cellular accumulation of drug. Cancer Res 48:3959–3963

    PubMed  CAS  Google Scholar 

  24. Jackson RC (1989) The problem of the quiescent cancer cell. Adv Enzyme Regul 29:27–46

    Article  PubMed  CAS  Google Scholar 

  25. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  26. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  27. Horiatis D, Wang Q, Pinski J (2004) A new screening system for proliferation-independent anticancer agents. Cancer Lett 210:119–124

    Article  PubMed  CAS  Google Scholar 

  28. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  29. Siu WY, Arooz T, Poon RY (1999) Differential responses of proliferating versus quiescent cells to adriamycin. Exp Cell Res 250:131–141

    Article  PubMed  CAS  Google Scholar 

  30. Jainchill JL, Todaro GJ (1970) Stimulation of cell growth in vitro by serum with and without growth factor relation to contact inhibition and viral transformation. Exp Cell Res 59:137–146

    Article  PubMed  CAS  Google Scholar 

  31. Baguley BC, Falkenhaug EM (1978) The interaction of ethidium with synthetic double-stranded polynucleotides at low ionic strength. Nucleic Acids Res 5:161–171

    Article  PubMed  CAS  Google Scholar 

  32. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  PubMed  CAS  Google Scholar 

  33. Palchaudhuri R, Hergenrother PJ (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol 18:497–503

    Article  PubMed  CAS  Google Scholar 

  34. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    Article  PubMed  CAS  Google Scholar 

  35. Hande KR (1998) Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta 1400:173–184

    PubMed  CAS  Google Scholar 

  36. Bolognese A, Correale G, Manfra M, Esposito A, Novellino E, Lavecchia A (2008) Antitumor agents 6. Synthesis, structure-activity relationships, and biological evaluation of spiro[imidazolidine-4, 3′-thieno[2, 3-g]quinoline]-tetraones and spiro[thieno[2, 3-g]quinoline-3, 5′-[1, 2, 4]triazinane]-tetraones with potent antiproliferative activity. J Med Chem 51:8148–8157

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki K, Yahara S, Kido Y, Nagao K, Hatano Y, Uyeda M (1998) Topostatin, a novel inhibitor of topoisomerases I and II produced by Thermomonospora alba strain No. 1520. II. Physico-chemical properties and structure elucidation. J Antibiot (Tokyo) 51:999–1003

    CAS  Google Scholar 

  38. Yoshinari T, Yamada A, Uemura D et al (1993) Induction of topoisomerase I-mediated DNA cleavage by a new indolocarbazole, ED-110. Cancer Res 53:490–494

    PubMed  CAS  Google Scholar 

  39. Chene P, Rudloff J, Schoepfer J et al (2009) Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem Biol 9:1

    Article  PubMed  Google Scholar 

  40. Meng LH, Zhang JS, Ding J (2001) Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 62:733–741

    Article  PubMed  CAS  Google Scholar 

  41. Park HJ, Lee HJ, Lee EJ et al (2003) Cytotoxicity and DNA topoisomerase inhibitory activity of benz[f]indole-4, 9-dione analogs. Biosci Biotechnol Biochem 67:1944–1949

    Article  PubMed  CAS  Google Scholar 

  42. Tzu-Hao W, Hsin-Shih W, Yung-Kwei S (2000) Paclitaxel-induced cell death. Cancer 88:2619–2628

    Article  Google Scholar 

  43. Jordan P, Carmo-Fonseca M (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci 57:1229–1235

    Article  PubMed  CAS  Google Scholar 

  44. Tsao YP, D’Arpa P, Liu LF (1992) The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 52:1823–1829

    PubMed  CAS  Google Scholar 

  45. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    PubMed  CAS  Google Scholar 

  46. Ling YH, el-Naggar AK, Priebe W, Perez-Soler R (1996) Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol Pharmacol 49:832–841

    PubMed  CAS  Google Scholar 

  47. Kletsas D, Barbieri D, Stathakos D et al (1998) The highly reducing sugar 2-deoxy-D-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochem Biophys Res Commun 243:416–425

    Article  PubMed  CAS  Google Scholar 

  48. Sheikh MS, Garcia M, Zhan Q, Liu Y, Fornace AJ Jr (1996) Cell cycle-independent regulation of p21Waf1/Cip1 and retinoblastoma protein during okadaic acid-induced apoptosis is coupled with induction of Bax protein in human breast carcinoma cells. Cell Growth Differ 7:1599–1607

    PubMed  CAS  Google Scholar 

  49. Durrant D, Richards JE, Walker WT, Baker KA, Simoni D, Lee RM (2008) Mechanism of cell death induced by cis-3, 4′, 5-trimethoxy-3′-aminostilbene in ovarian cancer. Gynecol Oncol 110:110–117

    Article  PubMed  CAS  Google Scholar 

  50. Criddle DN, Gillies S, Baumgartner-Wilson HK et al (2006) Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281:40485–40492

    Article  PubMed  CAS  Google Scholar 

  51. Kirshner JR, He S, Balasubramanyam V et al (2008) Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther 7:2319–2327

    Article  PubMed  CAS  Google Scholar 

  52. Place AE, Suh N, Williams CR et al (2003) The novel synthetic triterpenoid, CDDO-imidazolide, inhibits inflammatory response and tumor growth in vivo. Clin Cancer Res 9:2798–2806

    PubMed  CAS  Google Scholar 

  53. Cervantes A, Pinedo HM, Lankelma J, Schuurhuis GJ (1988) The role of oxygen-derived free radicals in the cytotoxicity of doxorubicin in multidrug resistant and sensitive human ovarian cancer cells. Cancer Lett 41:169–177

    Article  PubMed  CAS  Google Scholar 

  54. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  PubMed  CAS  Google Scholar 

  55. Lamb J (2007) The connectivity map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  PubMed  CAS  Google Scholar 

  56. Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330

    Article  PubMed  CAS  Google Scholar 

  57. Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  PubMed  CAS  Google Scholar 

  58. Shibahara S (2003) The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. Tohoku J Exp Med 200:167–186

    Article  PubMed  CAS  Google Scholar 

  59. Pietsch EC, Chan JY, Torti FM, Torti SV (2003) Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J Biol Chem 278:2361–2369

    Article  PubMed  CAS  Google Scholar 

  60. Ferris CD, Jaffrey SR, Sawa A et al (1999) Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol 1:152–157

    Article  PubMed  CAS  Google Scholar 

  61. Nagai T, Kikuchi S, Ohmine K et al (2008) Hemin reduces cellular sensitivity to imatinib and anthracyclins via Nrf2. J Cell Biochem 104:680–691

    Article  PubMed  CAS  Google Scholar 

  62. Brown JM (1993) SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 67:1163–1170

    Article  PubMed  CAS  Google Scholar 

  63. Marcu L, Olver I (2006) Tirapazamine: from bench to clinical trials. Curr Clin Pharmacol 1:71–79

    Article  PubMed  CAS  Google Scholar 

  64. Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  PubMed  CAS  Google Scholar 

  65. Matsunaga, T, Tsuji, Y, Kaai, K, et al (2010) Toxicity against gastric cancer cells by combined treatment with 5-fluorouracil and mitomycin c: implication in oxidative stress. Cancer Chemother Pharmacol. doi:10.1007/s00280-009-1292-5

  66. Laux I, Nel A (2001) Evidence that oxidative stress-induced apoptosis by menadione involves Fas-dependent and Fas-independent pathways. Clin Immunol 101:335–344

    Article  PubMed  CAS  Google Scholar 

  67. Kang YH, Yi MJ, Kim MJ et al (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 64:8960–8967

    Article  PubMed  CAS  Google Scholar 

  68. Lee CS, Park SY, Ko HH, Han ES (2004) Effect of change in cellular GSH levels on mitochondrial damage and cell viability loss due to mitomycin c in small cell lung cancer cells. Biochem Pharmacol 68:1857–1867

    Article  PubMed  CAS  Google Scholar 

  69. Siu WY, Yam CH, Poon RYC (1999) G1 versus G2 cell cycle arrest after adriamycin-induced damage in mouse Swiss3T3 cells. FEBS Lett 461:299–305

    Article  PubMed  CAS  Google Scholar 

  70. Matzno S, Yamaguchi Y, Akiyoshi T, Nakabayashi T, Matsuyama K (2008) An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biol Pharm Bull 31:1270–1273

    Article  PubMed  CAS  Google Scholar 

  71. Emil Mladenov ITBA (2007) Activation of the S phase DNA damage checkpoint by mitomycin C. J Cell Physiol 211:468–476

    Article  PubMed  Google Scholar 

  72. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  PubMed  CAS  Google Scholar 

  73. Berkenblit A, Eder JP Jr, Ryan DP et al (2007) Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin Cancer Res 13:584–590

    Article  PubMed  CAS  Google Scholar 

  74. Tuma RS (2008) Reactive oxygen species may have antitumor activity in metastatic melanoma. J Natl Cancer Inst 100:11–12

    Article  PubMed  Google Scholar 

  75. Hauschild A, Eggermont AM, Jacobson E, O’Day SJ (2009) Phase III, randomized, double-blind study of elesclomol and paclitaxel versus paclitaxel alone in stage IV metastatic melanoma (MM). J Clin Oncol (Meeting Abstracts) 27:LBA9012

    Google Scholar 

Download references

Acknowledgements

We would like to thank Justin Lamb (Broad Institute) for advice regarding use of the Connectivity Map database, the Keck facility at the University of Illinois for performing the microarray experiment and data processing, Russel J. Mumper (U. Kentucky) for the kind gift of the HL-60 VCR cell line, Joseph S. Bair (UIUC) for synthesis of tirapazamine, and Dr. Benjamin J. Leslie (UIUC) for preliminary HL-60 VCR assays. Funding was provided by the University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Hergenrother.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information Available

Materials and methods, spectral data for all new compounds, and pathway diagrams based on transcript profiling experiments. (PDF 2083 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyt, M.T., Palchaudhuri, R. & Hergenrother, P.J. Cribrostatin 6 induces death in cancer cells through a reactive oxygen species (ROS)-mediated mechanism. Invest New Drugs 29, 562–573 (2011). https://doi.org/10.1007/s10637-010-9390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9390-x

Keywords

Navigation