Skip to main content
Log in

Optic nerve potentials and cortical potentials after stimulation of the anterior visual pathway during neurosurgery

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The aim was to present cortical potentials after intraoperative electrical epidural stimulation of the optic nerve (ON) in individuals with normal preoperative vision. Optic nerve potentials after flash and electrical stimulation were additionally recorded. Contact electrodes on ON and occiput were used for monopolar recording of optic nerve potentials and cortical potentials, respectively. Epidural stimulating electrodes on ON were used to deliver a rectangular current pulse (intensity 0.2–5.0 mA; duration 0.1–0.3 ms; rate 2 Hz), and LED flash goggles were used for flash stimulation. Optic nerve potentials after flash stimulation predominantly consisted of a positive deflection with a latency around 40 ms, followed by a longer-lasting negativity with the peak at around 50 ms. Optic nerve potentials after electrical epidural stimulation of ON were comprised of a negative deflection at around 3 ms. A positive and a negative deflection at 20 and 30 ms, respectively, and a smaller positive deflection at 40 ms constituted cortical potentials after electrical epidural stimulation of ON. Stable and repeatable cortical potentials after electrical epidural stimulation of ON could safely be recorded in humans during neurosurgery. The origin of these presumably far-field potentials and their potential role in intraoperative monitoring remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Newman S (2007) A prospective study of cavernous sinus surgery for meningiomas and resultant common ophthalmic complications (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 105:392–447

    Google Scholar 

  2. Chi JH, McDermott MW (2003) Tuberculum sellae meningiomas. Neurosurg Focus 14:e6

    Article  PubMed  Google Scholar 

  3. Chicani CF, Miller NR (2003) Visual outcome in surgically treated suprasellar meningiomas. J Neuroophthalmol 23:3–10

    PubMed  Google Scholar 

  4. Fahlbusch R, Schott W (2002) Pterional surgery of meningiomas of the tuberculum sellae and planum sphenoidale: surgical results with special consideration of ophthalmological and endocrinological outcomes. J Neurosurg 96:235–243

    Article  PubMed  Google Scholar 

  5. Goel A, Muzumdar D, Desai KI (2002) Tuberculum sellae meningioma: a report on management on the basis of a surgical experience with 70 patients. Neurosurgery 51:1358–1363; discussion 1363–1354

    Google Scholar 

  6. Jallo GI, Benjamin V (2002) Tuberculum sellae meningiomas: microsurgical anatomy and surgical technique. Neurosurgery 51:1432–1439; discussion 1439–1440

    Google Scholar 

  7. Margalit NS, Lesser JB, Moche J, Sen C (2003) Meningiomas involving the optic nerve: technical aspects and outcomes for a series of 50 patients. Neurosurgery 53:523–532; discussion 532–523

    Google Scholar 

  8. Mathiesen T, Kihlstrom L (2006) Visual outcome of tuberculum sellae meningiomas after extradural optic nerve decompression. Neurosurgery 59:570–576; discussion 570–576

    Google Scholar 

  9. Park CK, Jung HW, Yang SY, Seol HJ, Paek SH, Kim DG (2006) Surgically treated tuberculum sellae and diaphragm sellae meningiomas: the importance of short-term visual outcome. Neurosurgery 59:238–243; discussion 238–243

    Google Scholar 

  10. Puchner MJ, Fischer-Lampsatis RC, Herrmann HD, Freckmann N (1998) Suprasellar meningiomas–neurological and visual outcome at long-term follow-up in a homogeneous series of patients treated microsurgically. Acta Neurochir 140:1231–1238

    Article  CAS  Google Scholar 

  11. Tobias S, Kim CH, Kosmorsky G, Lee JH (2003) Management of surgical clinoidal meningiomas. Neurosurg Focus 14:e5

    Article  PubMed  Google Scholar 

  12. Zevgaridis D, Medele RJ, Muller A, Hischa AC, Steiger HJ (2001) Meningiomas of the sellar region presenting with visual impairment: impact of various prognostic factors on surgical outcome in 62 patients. Acta Neurochir 143:471–476

    Article  CAS  Google Scholar 

  13. Dolenc VV (2003) Microsurgical anatomy and surgery of the central skull base. Springer, Wien-New York

  14. Suzukawa K (1989) Evaluation of the transcranial approach to pituitary adenomas based on quantitative analysis of pre- and postoperative visual function. Neurol Med Chir 29:1012–1019

    Article  CAS  Google Scholar 

  15. Tobimatsu S, Celesia GG (2006) Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol 117:1414–1433

    Article  PubMed  Google Scholar 

  16. Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan (2004) Visual evoked potentials standard (2004). Doc Ophthalmol 108:115–123

    Article  PubMed  Google Scholar 

  17. Cedzich C, Schramm J (1990) Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin 28:165–169

    Article  PubMed  CAS  Google Scholar 

  18. Cedzich C, Schramm J, Fahlbusch R (1987) Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery 21:709–715

    Article  PubMed  CAS  Google Scholar 

  19. Cedzich C, Schramm J, Mengedoht CF, Fahlbusch R (1988) Factors that limit the use of flash visual evoked potentials for surgical monitoring. Electroencephalogr clin neurophysiol 71:142–145

    Article  PubMed  CAS  Google Scholar 

  20. Moller AR, Burgess JE, Sekhar LN (1987) Recording compound action potentials from the optic nerve in man and monkeys. Electroencephalogr Clin Neurophysiol 67:549–555

    Article  PubMed  CAS  Google Scholar 

  21. Kondo S, Kobayashi A, Nagata H, Kudo Y, Chiba Y (1998) Short-latency VEPs recorded directly from the optic nerve during microneurosurgery. In: 6th international Evoked Potentials symposium

  22. Kikuchi Y, Sasaki T, Matsumoto M, Oikawa T, Itakura T, Kodama N (2005) Optic nerve evoked potentials elicited by electrical stimulation. Neurol Med Chir (Tokyo) 45:349–355; discussion 354–345

    Google Scholar 

  23. Pratt H, Bleich N, Berliner E (1982) Short latency visual evoked potentials in man. Electroencephalogr clin neurophysiol 54:55–62

    Article  PubMed  CAS  Google Scholar 

  24. Pratt H, Bleich N, Martin WH (1995) Short latency visual evoked potentials to flashes from light-emitting diodes. Electroencephalogr clin neurophysiol 96:502–508

    Article  PubMed  CAS  Google Scholar 

  25. Bošnjak R, Benedičič M (2008) Direct epidural electrical stimulation of the optic nerve: a new method for intraoperative assessment of function. J Neurosurg 109:647–653

    Article  PubMed  Google Scholar 

  26. Dolenc VV (1989) Anatomy and surgery of the Cavernous sinus. Springer, Wien-New York

    Google Scholar 

  27. Hawlina M, Konec B (1992) New noncorneal HK-loop electrode for clinical electroretinography. Doc Ophthalmol 81:253–259

    Article  PubMed  CAS  Google Scholar 

  28. McGill KC, Cummins KL, Dorfman LJ, Berlizot BB, Leutkemeyer K, Nishimura DG, Widrow B (1982) On the nature and elimination of stimulus artifact in nerve signals evoked and recorded using surface electrodes. IEEE Trans Biomed Eng 29:129–137

    Article  PubMed  CAS  Google Scholar 

  29. Hua Y, Lovely DF, Doraiswami R (2006) Factors affecting the stimulus artifact tail in surface-recorded somatosensory-evoked potentials. Med Biol Eng Comput 44:226–241

    Article  PubMed  CAS  Google Scholar 

  30. Hamming N, Lovely DF (2007) Influence of recording instrumentation on the stimulus artifact tail in the surface acquisition of somatosensory evoked potentials. Med Eng Phys 29:148–153

    Article  PubMed  CAS  Google Scholar 

  31. Schroeder CE, Tenke CE, Givre SJ (1992) Subcortical contributions to the surface-recorded flash-VEP in the awake macaque. Electroencephalogr Clin Neurophysiol 84:219–231

    Article  PubMed  CAS  Google Scholar 

  32. Oozeer M, Veraart C, Legat V, Delbeke J (2005) Simulation of intra-orbital optic nerve electrical stimulation. Med Biol Eng Comput 43:608–617

    Article  PubMed  CAS  Google Scholar 

  33. Brelen ME, De Potter P, Gersdorff M, Cosnard G, Veraart C, Delbeke J (2006) Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Case report. J Neurosurg 104:593–597

    Article  PubMed  Google Scholar 

  34. Delbeke J, Pins D, Michaux G, Wanet-Defalque MC, Parrini S, Veraart C (2001) Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest Ophthalmol Vis Sci 42:291–297

    PubMed  CAS  Google Scholar 

  35. Veraart C, Duret F, Brelen M, Delbeke J (2004) Vision rehabilitation with the optic nerve visual prosthesis. Conf Proc IEEE Eng Med Biol Soc 6:4163–4164

    PubMed  CAS  Google Scholar 

  36. Brelen ME, Vince V, Gerard B, Veraart C, Delbeke J (2010) Measurement of evoked potentials following electrical stimulation of the human optic nerve. Invest Ophthalmol Vis Sci 51(10):5351–5355

    Google Scholar 

  37. Parrini S, Delbeke J, Legat V, Veraart C (2000) Modelling analysis of human optic nerve fibre excitation based on experimental data. Med Biol Eng Comput 38:454–464

    Article  PubMed  CAS  Google Scholar 

  38. Deupree DL, Jewett DL (1988) Far-field potentials due to action potentials traversing curved nerves, reaching cut nerve ends, and crossing boundaries between cylindrical volumes. Electroencephalogr Clinical Neurophysiol 70:355–362

    Article  CAS  Google Scholar 

  39. Jewett DL, Deupree DL, Bommannan D (1990) Far-field potentials generated by action potentials of isolated frog sciatic nerves in a spherical volume. Electroencephalogr Clinical Neurophysiol 75:105–117

    Article  CAS  Google Scholar 

  40. Nakanishi T (1982) Action potentials recorded by fluid electrodes. Electroencephalogr Clinical Neurophysiol 53:343–345

    Article  CAS  Google Scholar 

  41. Nakanishi T (1983) Origin of action potential recorded by fluid electrodes. Electroencephalogr Clinical Neurophysiol 55:114–115

    Article  CAS  Google Scholar 

  42. Rhoton AL Jr (2002) The orbit. Neurosurgery 51:S303–S334

    Article  PubMed  Google Scholar 

  43. Raudzens PA (1982) Intraoperative monitoring of evoked potentials. Ann N Y Acad Sci 388:308–326

    Article  PubMed  CAS  Google Scholar 

  44. Neuloh G (2010) Time to revisit VEP monitoring? Acta neurochir 152:649–650

    Google Scholar 

  45. Kodama K, Goto T, Sato A, Sakai K, Tanaka Y, Hongo K (2010) Standard and limitation of intraoperative monitoring of the visual evoked potential. Acta neurochir 152:643–648

    Google Scholar 

  46. Ota T, Kawai K, Kamada K, Kin T, Saito N (2010) Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J Neurosurg 112:285–294

    Google Scholar 

  47. Sasaki T, Itakura T, Suzuki K, Kasuya H, Munakata R, Muramatsu H, Ichikawa T, Sato T, Endo Y, Sakuma J, Matsumoto M (2010) Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method. J Neurosurg 112:273–284

    Google Scholar 

  48. Stippler M, Kondziolka D (2006) Skull base meningiomas: is there a place for microsurgery? Acta Neurochir 148:1–3

    Article  CAS  Google Scholar 

  49. Bejjani GK, Sekhar LN, Yost AM, Bank WO, Wright DC (1999) Vasospasm after cranial base tumor resection: pathogenesis, diagnosis, and therapy. Surg neurol 52:577–583; discussion 583–574

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs Romana Kren for assistance with the preparation of figures. We are also thankful to Mr. Marjan Mihelin D.Sc., E.E. for his assistance with postprocessing of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Bošnjak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedičič, M., Bošnjak, R. Optic nerve potentials and cortical potentials after stimulation of the anterior visual pathway during neurosurgery. Doc Ophthalmol 122, 115–125 (2011). https://doi.org/10.1007/s10633-011-9265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9265-2

Keywords

Navigation