Skip to main content

Advertisement

Log in

Changes in chromatic pattern-onset VEP with full-body inversion

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose Intra-ocular pressure (IOP) increases to double that of its normal level under full-body inversion, in part simulating high IOPs found in glaucoma and ocular hypertension. Inversion also simulates negative g-forces experienced in aerobatic maneuvers such as those produced during aerial combat. Studies using achromatic pattern-reversal visual evoked potentials (VEPs) have shown losses in response amplitude when subjects are inverted and IOP is increased. In other studies, chromatic, pattern-onset VEPs have been shown to be a sensitive and objective indicator of ocular and systemic pathology. Thus, chromatic pattern-onset VEPs may also show changes in amplitude and/or latency when subjects are subjected to full-body inversion. Methods In this study we employed chromatic, pattern-onset VEPs to determine if there were changes in response latency for the different visual pathways with healthy subjects during full-body inversion. Stimuli were 1 cpd horizontal sine-wave patterns presented in an onset mode (100 ms on/400 ms off). Subjects (n = 7) were tested at low to medium contrast levels, which were subjectively equated across chromatic pathways (S, LM, and achromatic). Patterns were presented using LCD goggles. Results All subjects showed a small but statistically significant increase in latency in the large negative component (CII) for both L − M and S − (L + M) pathways during inversion. The achromatic pathway also showed a statistically significant increase in latency to the positive component (CI) during inversion. Conclusions These results demonstrate that changes in ocular and/or systemic physiology during full-body inversion can result in increased latencies of chromatic and achromatic pattern-onset VEPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IOP:

Intra-ocular pressure

RVPP:

Retinal vascular profusion pressure

VEP:

Visual evoked potential

References

  1. Grieshaber MC, Flammer J (2005) Blood flow in glaucoma. Curr Opin Ophthalmol 16:79–83. doi:10.1097/01.icu.0000156134.38495.0b

    Article  PubMed  Google Scholar 

  2. Linder BJ, Trick GL (1987) Simulation of spaceflight with whole-body head down tilt: influence on intraocular pressure and retinocortical processing. Aviat Space Environ Med 58(9 Pt 2):A139–A142

    PubMed  CAS  Google Scholar 

  3. Draeger J, Hanke K (1986) Postural variations of intraocular pressure—preflight experiments for the D1 mission. Ophthalmic Res 18(1):55–60

    Article  PubMed  CAS  Google Scholar 

  4. Hawkins AS, Szlyk JP, Ardickas Z, Alexander KR, Wilensky JT (2003) Comparison of contrast sensitivity, visual field testing in patients with glaucoma. J Glaucoma 12(2):134–138. doi:10.1097/00061198-200304000-00008

    Article  PubMed  Google Scholar 

  5. Linder J, Trick G, Wolf L (1988) Altering body position affects intraocular pressure and visual function. Invest Ophthalmol Vis Sci 29(10):1492–1497

    PubMed  CAS  Google Scholar 

  6. Flammer J (1994) The vascular concept in glaucoma. Surv Ophthalmol 38(Suppl):3–6. doi:10.1016/0039-6257(94)90041-8

    Article  Google Scholar 

  7. Flammer J, Drance SM (1984) Correlation between color vision scores and quantitative perimetry in suspected glaucoma. Arch Ophthalmol 102(1):38–39

    PubMed  CAS  Google Scholar 

  8. Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefánsson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393. doi:10.1016/S1350-9462(02)00008-3

    Article  PubMed  Google Scholar 

  9. Flammer J (2001) Glaucoma. A guide for patients. An introduction for care-providers. A reference for quick information, 1st edn. Huber, Bern, Gottingen/Toronto/Seattle

    Google Scholar 

  10. Weinreb R, Cook J, Friberg T (1984) Effect of inverted body position on interlobular pressure. Am J Ophthalmol 98:784–787

    PubMed  CAS  Google Scholar 

  11. Friberg T, Weinreb R (1985) Ocular manifestations of gravity inversion. JAMA 253(12):1755–1757. doi:10.1001/jama.253.12.1755

    Article  PubMed  CAS  Google Scholar 

  12. Kothe AC, Lovasik JV (1989) A parametric evaluation of retinal vascular perfusion pressure and visual neural function in man. Electroencephalogr Clin Neurophysiol 75:185–199. doi:10.1016/0013-4694(90)90172-G

    Google Scholar 

  13. Friberg TR, Sanborn G (1985) Optic nerve dysfunction during gravity inversion. Pattern reversal visual evoked potentials. Arch Ophthalmol 103(11):1687–1689

    PubMed  CAS  Google Scholar 

  14. Greensteitn VC, Hood DC, Ritch R, Steinberger D, Carr RE (1989) S (blue) cone pathway vulnerability in retinitis pigmentosa diabetes and glaucoma. Invest Ophthalmol Vis Sci 30:1732–1737

    Google Scholar 

  15. Crognale MA, Rabin J, Switkes E, Adams AJ (1993) Selective loss of S-pathway sensitivity in central serous chroidpathy revealed by spatio-chromatic visual evoked cortical potentials (VECP) In: Drum B (ed) Colour vision deficiencies XI, pp 229–239

  16. Schneck ME, Lee E, Fortune B, Switkes EW, Crognale M (1997) Spatio-chromatic VEPs in recovered optic neuritis and multiple sclerosis. In: Cavonius CR (ed) Color vision deficiencies XIII, pp 179–185

  17. Rabin J, Switkes E, Crognale MA, Schneck M (1994) Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing. Vis Res 34:2657–2671. doi:10.1016/0042-6989(94)90222-4

    Article  PubMed  CAS  Google Scholar 

  18. Cotter SA, Lee DY, French AL (1999) Evaluation of a new color vision test: “color vision testing made easy”. Opt Vis Sci 76(9):631–636. doi:10.1097/00006324-199909000-00020

    Article  CAS  Google Scholar 

  19. MacLeod DI, Boynton RM (1978) Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am 69:1183–1186. doi:10.1364/JOSA.69.001183

    Article  Google Scholar 

  20. Derrington AM, Krauskopf J, Lennie P (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J Physiol 357:241–265

    PubMed  CAS  Google Scholar 

  21. Wagner B, Boynton RM (1972) Comparison of four methods of heterochromatic photometry. J Opt Soc Am 62:1508–1515. doi:10.1364/JOSA.62.001508

    Article  PubMed  CAS  Google Scholar 

  22. Switkes E, Crognale MA (1999) Comparison of color and luminance contrasts: apples versus oranges? Vis Res 39:1823–1831. doi:10.1016/S0042-6989(98)00219-3

    Article  PubMed  CAS  Google Scholar 

  23. Berninger TA, Arden GB, Hogg CR, Frumkes T (1989) Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results. Br J Ophthalmol 73(7):502–511. doi:10.1136/bjo.73.7.502

    Article  PubMed  CAS  Google Scholar 

  24. Kulikowski JJ, Robson AG, McKeefry DJ (1996) Specificity and selectivity of chromatic visual evoked potentials. Vis Res 36(21):3397–3401. doi:10.1016/0042-6989(96)00055-7

    Article  PubMed  CAS  Google Scholar 

  25. Switkes E, Crognale M, Rabin J, Schneck ME, Adams AJ (1996) Reply to ‘Specificity and selectivity of chromatic visual evoked potentials’. Vis Res 36:3403–3405. doi:10.1016/0042-6989(96)00056-9

    Article  PubMed  CAS  Google Scholar 

  26. Porciatti V, Sartucci F (1996) Retinal and cortical evoked response to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 199:723–740. doi:10.1093/brain/119.3.723

    Article  Google Scholar 

  27. Harding GFA, Odom JV, Spileers W, Spekreijse H (1996) Standard for visual evoked potentials 1995. Vis Res 36:3567–3572. doi:10.1016/0042-6989(96)00125-3

    Article  PubMed  CAS  Google Scholar 

  28. Tekavcic-Pompe M, Tekavcic I (2008) Color vision in the tritan axis is predominantly affected at high altitude. High Alt Med Biol 9(1):38–42. doi:10.1089/ham.2008.1034

    Article  PubMed  Google Scholar 

  29. Gobba F (2000) Color vision: a sensitive indicator for exposure to neurotoxins. Neurotoxicology 21(5):857–862

    PubMed  CAS  Google Scholar 

  30. Pokorny J, Pinckers S (eds) (1979) Congenital and acquired color vision defects. Grune & Straton, New York

    Google Scholar 

  31. Mollon JD (1982) Color vision. Ann Rev Physiol 33:41–85

    CAS  Google Scholar 

  32. Sanberg MA, Berson EL (1977) Blue and green cone mechanisms in retinitis pigmentosa. Invest Ophthalmol Vis Sci 16:149–157

    Google Scholar 

  33. Ventura Df, Gualtieri M, Oliveria AG, Costa MF, Quiros P, Sadun F, de Negri AM, Salomao SR, Berezovsky A, Sherman J, Sadun AA, Carelli V (2007) Male prevalence of acquired color vision defects in asymptomatic carriers of Lever’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 48(4):2362–2370

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Highsmith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Highsmith, J., Crognale, M.A. Changes in chromatic pattern-onset VEP with full-body inversion. Doc Ophthalmol 119, 59–66 (2009). https://doi.org/10.1007/s10633-009-9170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-009-9170-0

Keywords

Navigation