Skip to main content
Log in

Improved syndrome decoding of lifted \(L\)-interleaved Gabidulin codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A syndrome decoding algorithm for lifted interleaved Gabidulin codes of order L is proposed. The algorithm corrects L times more deviations (packet insertions) than known syndrome decoding methods with probability at least \(1-8q^{-n}\), where n is the length of the (interleaved) Gabidulin code. For \(n<L\), the proposed scheme has L times less computational complexity than known interpolation-factorization based decoders which attain the same decoding region. Upper bounds on the decoding failure probability are derived. Up to our knowledge this is the first syndrome-based scheme for interleaved subspace codes that can correct deviations beyond the unique decoding radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. In case the error locators \(X_0,\dots ,X_{\tau -1}\) are known and the error values are unknown, (23) does not form a linear system of equations in the unknown error-values \(b^{(j)}_0,\dots ,b^{(j)}_{\tau -1}\).

  2. The system of equations in (21) or (23) is not necessarily linear. In the following we write “(linear)” if the considered systems of equations are not necessarily linear.

References

  1. Ahlswede R., Cai N., Li S., Yeung R.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartz H.: Algebraic decoding of subspace and rank-metric codes. PhD thesis, Technische Universität München (2017)

  3. Bartz H., Meier M., Sidorenko V.: Improved syndrome decoding of interleaved subspace codes. In: 11th International ITG Conference on Systems, Communication and Coding 2017 (SCC), Hamburg, Germany (2017).

  4. Bartz H., Wachter-Zeh A.: Efficient decoding of interleaved subspace and Gabidulin codes beyond their unique decoding radius using Gröbner bases. Adv Math Commun. 12(4), 773–804 (2018). https://doi.org/10.3934/amc.2018046.

    Article  MATH  Google Scholar 

  5. Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(1), 3–16 (1985).

    MathSciNet  MATH  Google Scholar 

  6. Gabidulin E.M., Paramonov A.V., Tretjakov O.V.: Rank errors and rank erasures correction. In: International Colloquium Coding Theory (1991).

  7. Gabidulin E.M., Pilipchuk N.I.: A new method of erasure correction by rank codes. In: IEEE International Symposium of Information Theory (ISIT), p. 423 (2003).

  8. Gabidulin E.M., Pilipchuk N.I.: Error and erasure correcting algorithms for rank codes. Des. Codes Cryptogr. 49(1–3), 105–122 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gadouleau M., Yan Z.: Complexity of decoding Gabidulin codes. In: 42nd Annual Conference on Information Sciences and Systems (CISS), pp. 1081–1085 (2008). https://doi.org/10.1109/CISS.2008.4558679.

  10. Guruswami V., Xing C.: List decoding Reed-Solomon, algebraic-geometric, and Gabidulin subcodes up to the singleton bound. Electron. Colloq. Comput. Complex. 19, 146 (2012).

    MATH  Google Scholar 

  11. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012).

    Book  Google Scholar 

  12. Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008). https://doi.org/10.1109/TIT.2008.926449.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li W., Sidorenko V., Silva D.: On transform-domain error and erasure correction by Gabidulin codes. Des. Codes Cryptogr. 73, 571–586 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1996).

    MATH  Google Scholar 

  15. Loidreau P., Overbeck R.: Decoding rank errors beyond the error correcting capability. In: International Workshop Algebraic and Combinatorial Coding Theory (ACCT), pp. 186–190 (2006).

  16. Overbeck R.: Decoding interleaved Gabidulin codes and ciphertext-security for GPT variants (preprint).

  17. Overbeck R.: Public key cryptography based on coding theory. PhD thesis, TU Darmstadt, Darmstadt, Germany (2007).

  18. Richter G., Plass S.: Error and erasure decoding of rank-codes with a modified Berlekamp-Massey algorithm. In: ITG Conference on Source Channel Coding (SCC) (2004).

  19. Sidorenko V.R., Jiang L., Bossert M.: Skew-feedback shift-register synthesis and decoding interleaved Gabidulin codes. IEEE Trans. Inf. Theory 57(2), 621–632 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. Sidorenko V.R., Richter G., Bossert M.: Linearized shift-register synthesis. IEEE Trans. Inf. Theory 57(9), 6025–6032 (2011). https://doi.org/10.1109/TIT.2011.2162173.

    Article  MathSciNet  MATH  Google Scholar 

  21. Silva D.: Error control for network coding. PhD thesis, University of Toronto, Toronto, Canada (2009).

  22. Silva D., Kschischang F.R., Kötter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. Skachek V., Roth R.M.: Probabilistic algorithm for finding roots of linearized polynomials. Des. Codes Cryptogr. 46(1), 17–23 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. Wachter-Zeh A., Zeh A.: Interpolation-based decoding of interleaved Gabidulin codes. In: International Workshop on Coding and Cryptography (WCC) (2013).

  25. Wachter-Zeh A., Zeh A.: List and unique error-erasure decoding of interleaved Gabidulin codes with interpolation techniques. Des. Codes Cryptogr. 73(2), 547–570 (2014). https://doi.org/10.1007/s10623-014-9953-5.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Manuela Meier for developing the simulation framework for the improved syndrome decoder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Bartz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

V. Sidorenko is on leave from Institute for Information Transmission Problems, Russian Academy of Sciences. His work is supported by the Russian Government (Contract No. 14.W03.31.0019).

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Appendix

Appendix

1.1 Proof of Lemma 1

Proof

Let us first consider

$$\begin{aligned} \tilde{s}^{(j)}_\text {D}(x)&=\sum _{l=1}^{L}\overline{s}^{(l)}(x)\otimes \overline{\varGamma }_{l}^{(j)}\left( x\right) \end{aligned}$$
(59)
$$\begin{aligned}&= \overline{s}^{(1)}(x)\otimes \overline{\varGamma }_{1}^{(j)}\left( x\right) +\overline{s}^{(2)}(x)\otimes \overline{\varGamma }_{2}^{(j)}\left( x\right) +\dots + \overline{s}^{(L)}(x)\otimes \overline{\varGamma }_{L}^{(j)}\left( x\right) \end{aligned}$$
(60)

for all \(j=1,\dots ,L\). Define the vectors

$$\begin{aligned} \mathbf {s}_{j}^{[i]}\overset{{{\mathrm{def}}}}{=}\left( \overline{s}_{j}^{(1)[i]} \ \overline{s}_{j}^{(2)[i]} \ \dots \ \overline{s}_{j}^{(L)[i]}\right) \end{aligned}$$
(61)

and

$$\begin{aligned} \mathbf {z}_{\ell }^{(l)[i]}\overset{{{\mathrm{def}}}}{=}\left( \overline{\varGamma }_{1,\ell }^{(l)[i]} \ \overline{\varGamma }_{2,\ell }^{(l)[i]} \ \dots \ \overline{\varGamma }_{L,\ell }^{(l)[i]} \right) ^T =\left( \varGamma _{1,D-\ell }^{(l)[i-D]} \ \varGamma _{2,D-\ell }^{(l)[i-D]} \ \dots \ \varGamma _{L,D-\ell }^{(l)[i-D]} \right) ^T \end{aligned}$$
(62)

for all \(\ell \in [0,D]\). The equality in (62) follows from the definition of the q-reverse (see (4)). Defining

$$\begin{aligned} \tilde{\mathbf {S}}_\text {D}= \begin{pmatrix} \tilde{s}_{\text {D},0}^{(1)} &{}\quad \tilde{s}_{\text {D},0}^{(2)} &{}\quad \dots &{}\quad \tilde{s}_{\text {D},0}^{(L)} \\ \tilde{s}_{\text {D},1}^{(1)[-1]} &{}\quad \tilde{s}_{\text {D},1}^{(2)[-1]} &{}\quad \dots &{}\quad \tilde{s}_{\text {D},1}^{(L)[-1]} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \tilde{s}_{\text {D},D+d-2}^{(1)[-(D+d-2)]} &{}\quad \tilde{s}_{\text {D},D+d-2}^{(2)[-(D+d-2)]} &{}\quad \dots &{}\quad \tilde{s}_{\text {D},D+d-2}^{(L)[-(D+d-2)]} \end{pmatrix} \end{aligned}$$
(63)

we can write (59) as

$$\begin{aligned} \tilde{\mathbf {S}}_\text {D}= \underbrace{ \begin{pmatrix} \mathbf {s}_0^{[0]}\phantom {^{-}} &{} &{} &{} \\ \mathbf {s}_1^{[-1]} &{} \quad \mathbf {s}_0^{[-1]} &{} &{} \\ \vdots &{} \quad \mathbf {s}_1^{[-2]} &{} \quad \ddots &{} \\ \mathbf {s}_{d-2}^{[-(d-2)]} &{}\quad \vdots &{}\quad \ddots &{}\quad \mathbf {s}_{0}^{[-D]} \\ &{}\quad \ddots &{}\quad \ddots &{}\quad \mathbf {s}_{1}^{[-(D+1)]\phantom {(-1)}} \\ &{} &{}\quad \ddots &{}\quad \vdots \\ &{} &{} &{}\quad \mathbf {s}_{d-2}^{[-(D+d-2)]} \end{pmatrix} }_{\mathbf {S}} \cdot \underbrace{ \begin{pmatrix} \mathbf {z}_{0}^{(1)} &{}\quad \mathbf {z}_{0}^{(2)} &{}\quad \dots &{}\quad \mathbf {z}_{0}^{(L)} \\ \mathbf {z}_{1}^{(1)[-1]} &{}\quad \mathbf {z}_{1}^{(2)[-1]} &{}\quad \dots &{}\quad \mathbf {z}_{1}^{(L)[-1]} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \mathbf {z}_{D}^{(1)[-D]} &{}\quad \mathbf {z}_{D}^{(2)[-D]} &{}\quad \dots &{}\quad \mathbf {z}_{D}^{(L)[-D]} \end{pmatrix}. }_{\mathbf {Z}} \end{aligned}$$
(64)

We now show that the rank of \(\mathbf {Z}\) in (64) is full, i.e. \({{\mathrm{rk}}}_{q^m}(\mathbf {Z})=L\). The matrix

$$\begin{aligned} \tilde{\mathbf {Z}}\overset{{{\mathrm{def}}}}{=}\begin{pmatrix} \mathbf {z}_{0}^{(1)} &{}\quad \mathbf {z}_{0}^{(2)} &{}\quad \dots &{}\quad \mathbf {z}_{0}^{(L)} \\ \mathbf {z}_{1}^{(1)} &{}\quad \mathbf {z}_{1}^{(2)} &{}\quad \dots &{}\quad \mathbf {z}_{1}^{(L)} \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \mathbf {z}_{D}^{(1)} &{} \mathbf {z}_{D}^{(2)} &{} \dots &{} \mathbf {z}_{D}^{(L)} \end{pmatrix} \end{aligned}$$
(65)

contains the coefficients of \(\varGamma ^{(1)},\dots ,\varGamma ^{(L)}\) as columns. Since \(\varGamma ^{(1)},\dots ,\varGamma ^{(L)}\) are \(\mathbb F_{q^m}\)-linearly independent, we have \({{\mathrm{rk}}}_{q^m}(\tilde{\mathbf {Z}})=L\). Thus, using elementary column operations, we can transform \(\tilde{\mathbf {Z}}\) into a matrix that contains \(L\) unit row vectors. These unit rows are invariant under the row-wise Frobenius automorphisms applied in (64) and thus we have \({{\mathrm{rk}}}_{q^m}(\mathbf {Z})=L\). Hence, the mapping

$$\begin{aligned} \left( s^{(1)}(x) \ s^{(2)}(x) \ \dots \ s^{(L)}(x)\right) \mapsto \left( \tilde{s}^{(1)}_\text {D}(x) \ \tilde{s}^{(1)}_\text {D}(x) \ \dots \ \tilde{s}^{(L)}_\text {D}(x)\right) \end{aligned}$$

is bijective. The Frobenius powers \(\overline{\varGamma }_{l}^{(j)}\left( x^{[d-2]}\right) ^{[-(d-2)]}\) in (43) correspond to raising each coefficient of \(\overline{\varGamma }_{l}^{(j)}(x)\) to the \([-(d-1)]\) which does not affect the rank of \(\mathbf {Z}\) in (64). Since \(\varLambda _\text {U}(x)\) is nonzero and common for all modified syndromes it follows that the mapping \(\left( s^{(1)}(x) \ s^{(2)}(x) \ \dots \ s^{(L)}(x)\right) \mapsto \left( \tilde{s}^{(1)}_\text {UD}(x) \ \tilde{s}^{(1)}_\text {UD}(x) \ \dots \ \tilde{s}^{(L)}_\text {UD}(x)\right) \) is bijective. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartz, H., Sidorenko, V. Improved syndrome decoding of lifted \(L\)-interleaved Gabidulin codes. Des. Codes Cryptogr. 87, 547–567 (2019). https://doi.org/10.1007/s10623-018-0563-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0563-5

Keywords

Mathematics Subject Classification

Navigation