Skip to main content
Log in

Dense families of modular curves, prime numbers and uniform symmetric tensor rank of multiplication in certain finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We obtain new uniform bounds for the symmetric tensor rank of multiplication in finite extensions of any finite field \(\mathbb {F}_p\) or \(\mathbb {F}_{p^2}\) where p denotes a prime number \(\ge 5\). In this aim, we use the symmetric Chudnovsky-type generalized algorithm applied on sufficiently dense families of modular curves defined over \(\mathbb {F}_{p^2}\) attaining the Drinfeld–Vladuts bound and on the descent of these families to the definition field \(\mathbb {F}_p\). These families are obtained thanks to prime number density theorems of type Hoheisel, in particular a result due to Dudek (Funct Approx Commmentarii Math, 55(2):177–197, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaud N.: Évaluations dérivés, multiplication dans les corps finis et codes correcteurs. PhD thesis, Université de la Méditerranée, Institut de Mathématiques de Luminy (2006).

  2. Baker R., Harman G., Pintz J.: The difference between consecutive primes, II. Proc. Lond. Math. Soc. 83(3), 532–562 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballet S.: Curves with many points and multiplication complexity in any extension of \(\mathbb{F}_q\). Finite Fields Their Appl. 5, 364–377 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballet S.: On the tensor rank of the multiplication in the finite fields. J. Number Theory 128, 1795–1806 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballet S., Le Brigand D.: On the existence of non-special divisors of degree \(g\) and \(g-1\) in algebraic function fields over \(\mathbb{F}_q\). J. Number Theory 116, 293–310 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Ballet S., Pieltant J.: Tower of algebraic function fields with maximal Hasse–Witt invariant and tensor rank of multiplication in any extension of \(\mathbb{F}_2\) and \(\mathbb{F}_3\). J. Pure Appl. Algebra 222(5), 1069–1086 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ballet S., Rolland R.: Multiplication algorithm in a finite field and tensor rank of the multiplication. J. Algebra 272(1), 173–185 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. Ballet S., Zykin A.: Dense families of modular curves, prime numbers and uniform symmetric tensor rank of multiplication in certain finite fields. In: Proceedings of The Tenth International Workshop on Coding and Cryptography (2017). http://wcc2017.suai.ru/proceedings.html.

  9. Ballet S., Pieltant J., Rambaud M., Sijsling J.: On some bounds for symmetric tensor rank of multiplication in finite fields. Contemp. Math. Am. Math. Soc. 686, 93–121 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. Cenk M., Özbudak F.: On multiplication in finite fields. J. Complex. 26(2), 172–186 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. Chudnovsky D., Chudnovsky G.: Algebraic complexities and algebraic curves over finite fields. J. Complex. 4, 285–316 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. Dudek A.: An explicit result for primes between cubes. Funct. Approx. Commmentarii Math. 55(2), 177–197 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. Randriambololona H.: Divisors of the form 2d-g without sections and bilinear complexity of multiplication in finite fields. ArXiv e-prints (2011).

  14. Randriambololona H.: Bilinear complexity of algebras and the Chudnovsky–Chudnovsky interpolation method. J. Complex. 28(4), 489–517 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. Shparlinski I., Tsfasman M., Vlăduţ S.: Curves with many points and multiplication in finite fields. In: Stichtenoth H., Tsfasman M.A. (eds.) Coding Theory and Algebraic Geometry, vol. 1518, pp. 145–169. Lectures Notes in MathematicsSpringer, Berlin (1992).

    Chapter  Google Scholar 

  16. Tsfasman M., Vlăduţ S.: Algebraic-Geometric Codes. Kluwer Academic Publishers, Dordrecht (1991).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank Sary Drappeau, Olivier Ramaré, Hugues Randriambololona, Joël Rivat and Serge Vladuts for valuable discussions. The second author, tragically deceased in April 2017, was partially supported by ANR Globes ANR-12-JS01-0007-01 and by the Russian Academic Excellence Project ‘5-100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Ballet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballet, S., Zykin, A. Dense families of modular curves, prime numbers and uniform symmetric tensor rank of multiplication in certain finite fields. Des. Codes Cryptogr. 87, 517–525 (2019). https://doi.org/10.1007/s10623-018-0560-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0560-8

Keywords

Mathematics Subject Classification

Navigation