Skip to main content

Advertisement

Log in

Some constructions of systematic authentication codes using galois rings

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

For q = p m and m ≥ 1, we construct systematic authentication codes over finite field \(\mathbb{F}_{q}\) using Galois rings. We give corrections of the construction of [2]. We generalize corresponding systematic authentication codes of [6] in various ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bierbrauer J, Johansson T, Kabatianskii G, Smeets B. (1994) On families of hash functions via geometric codes and concatenation. In: Stinson DR (ed) Advances in Cryptology Crypto’93, LNCS 773. Springer-Verlag, Berlin, pp 331–342

    Google Scholar 

  2. Bini G, (2006) A-codes from rational functions over Galois rings. Design, Code Cryptogr 39(2):207–214

    Article  MATH  MathSciNet  Google Scholar 

  3. Constantinescu I, Heise T. (1997) A metric for codes over residue class rings of integers. Problemy Peredachi Informatsii 33(3):22–28

    MATH  MathSciNet  Google Scholar 

  4. Ding C, Niederreiter H. (2004) Systematic authentication codes from highly nonlinear functions. IEEE Trans Inform Theory 50(10):2421–2428

    Article  MathSciNet  Google Scholar 

  5. Greferath M, Schmidt S.E. (1999) Gray isometries for finite chain rings and a non-linear ternary (36, 312, 15) code. IEEE Trans Inform Theory 45:2522–2524

    Article  MATH  MathSciNet  Google Scholar 

  6. Helleseth T, Johansson T. (1996) Universal hash functions from exponential sums over finite fields and Galois rings. In: Koblitz N (ed) Advances in Cryptology Crypto’96, LNCS 1109. Springer-Verlag, Berlin, pp 31–44

    Google Scholar 

  7. Helleseth T, Kumar K.V., Shanbhag A.G. (1996) Exponential sums over Galois rings and their applications Finite fields and applications (Glasgow, 1995). London Math. Soc. Lecture Note Ser., vol. 233. Cambridge University Press, Cambridge, pp 109–128

    Google Scholar 

  8. Kumar P.V., Helleseth T, Calderbank A.R. (1995) An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans Inform Theory 41:456–468

    Article  MATH  MathSciNet  Google Scholar 

  9. Ling S, Özbudak F. (2006) Improved bounds on Weil sums over Galois rings and homogeneous weights. In: Ythervs O (ed) Proceedings of WCC 2005, LNCS 3969. Springer-Verlag, Berlin, pp 412–426

    Google Scholar 

  10. Ling S, Özbudak F. (2006) Aperiodic and odd correlations of some p-ary sequences. IEICE Trans Fundamentals, E89-A, pp 2258–2263

  11. Simmons G.J. (1984) Authentication theory/coding theory. In: Blankey GR, Chum D (eds) Advances in cryptology Crypto’84, LNCS 196. Springer-Verlag, Berlin, pp 411–431

    Google Scholar 

  12. Stinson D.R. (1994) Universal hashing and authentication codes. Design, Code Cryptogr 4:337–346

    Google Scholar 

  13. Stinson D.R. (1995) Cryptography: theory and practice. CRC, Boca Raton, FL

    Google Scholar 

  14. Wan Z.X. (2003) Lectures on finite fields and galois rings. World Scientific, Singapore

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferruh Özbudak.

Additional information

Communicated by P. Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özbudak, F., Saygi, Z. Some constructions of systematic authentication codes using galois rings. Des Codes Crypt 41, 343–357 (2006). https://doi.org/10.1007/s10623-006-9021-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9021-x

Keywords

AMS Classification