Abstract
For q = p m and m ≥ 1, we construct systematic authentication codes over finite field \(\mathbb{F}_{q}\) using Galois rings. We give corrections of the construction of [2]. We generalize corresponding systematic authentication codes of [6] in various ways.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bierbrauer J, Johansson T, Kabatianskii G, Smeets B. (1994) On families of hash functions via geometric codes and concatenation. In: Stinson DR (ed) Advances in Cryptology Crypto’93, LNCS 773. Springer-Verlag, Berlin, pp 331–342
Bini G, (2006) A-codes from rational functions over Galois rings. Design, Code Cryptogr 39(2):207–214
Constantinescu I, Heise T. (1997) A metric for codes over residue class rings of integers. Problemy Peredachi Informatsii 33(3):22–28
Ding C, Niederreiter H. (2004) Systematic authentication codes from highly nonlinear functions. IEEE Trans Inform Theory 50(10):2421–2428
Greferath M, Schmidt S.E. (1999) Gray isometries for finite chain rings and a non-linear ternary (36, 312, 15) code. IEEE Trans Inform Theory 45:2522–2524
Helleseth T, Johansson T. (1996) Universal hash functions from exponential sums over finite fields and Galois rings. In: Koblitz N (ed) Advances in Cryptology Crypto’96, LNCS 1109. Springer-Verlag, Berlin, pp 31–44
Helleseth T, Kumar K.V., Shanbhag A.G. (1996) Exponential sums over Galois rings and their applications Finite fields and applications (Glasgow, 1995). London Math. Soc. Lecture Note Ser., vol. 233. Cambridge University Press, Cambridge, pp 109–128
Kumar P.V., Helleseth T, Calderbank A.R. (1995) An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans Inform Theory 41:456–468
Ling S, Özbudak F. (2006) Improved bounds on Weil sums over Galois rings and homogeneous weights. In: Ythervs O (ed) Proceedings of WCC 2005, LNCS 3969. Springer-Verlag, Berlin, pp 412–426
Ling S, Özbudak F. (2006) Aperiodic and odd correlations of some p-ary sequences. IEICE Trans Fundamentals, E89-A, pp 2258–2263
Simmons G.J. (1984) Authentication theory/coding theory. In: Blankey GR, Chum D (eds) Advances in cryptology Crypto’84, LNCS 196. Springer-Verlag, Berlin, pp 411–431
Stinson D.R. (1994) Universal hashing and authentication codes. Design, Code Cryptogr 4:337–346
Stinson D.R. (1995) Cryptography: theory and practice. CRC, Boca Raton, FL
Wan Z.X. (2003) Lectures on finite fields and galois rings. World Scientific, Singapore
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Wild.
Rights and permissions
About this article
Cite this article
Özbudak, F., Saygi, Z. Some constructions of systematic authentication codes using galois rings. Des Codes Crypt 41, 343–357 (2006). https://doi.org/10.1007/s10623-006-9021-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-006-9021-x