Skip to main content

Advertisement

Log in

Cystic Fibrosis-Related Gut Dysbiosis: A Systematic Review

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Cystic Fibrosis (CF) is associated with gut dysbiosis, local and systemic inflammation, and impaired immune function. Gut microbiota dysbiosis results from changes in the complex gut milieu in response to CF transmembrane conductance regulator (CFTR) dysfunction, pancreatic malabsorption, diet, medications, and environmental influences. In several diseases, alteration of the gut microbiota influences local and systemic inflammation and disease outcomes. We conducted a systematic review of the gut microbiota in CF and explored factors influencing dysbiosis.

Methods

An electronic search of three databases was conducted in January 2019, and re-run in June 2021. Human, animal, and in vitro studies were included. The primary outcome was differences in the gut microbiota between people with CF (pwCF) and healthy controls. Secondary outcomes included the relationship between the gut microbiota and other factors, including diet, medication, inflammation, and pulmonary function in pwCF.

Results

Thirty-eight studies were identified. The literature confirmed the presence of CF-related gut dysbiosis, characterized by reduced diversity and several taxonomic changes. There was a relative increase of bacteria associated with a pro-inflammatory response coupled with a reduction of those considered anti-inflammatory. However, studies linking gut dysbiosis to systemic and lung inflammation were limited. Causes of gut dysbiosis were multifactorial, and findings were variable. Data on the impact of CFTR modulators on the gut microbiota were limited.

Conclusions

CF-related gut dysbiosis is evident in pwCF. Whether this influences local and systemic disease and is amenable to interventions with diet and drugs, such as CFTR modulators, requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al Bataineh MT, Dash NR, Bel Lassen P et al. Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: a pilot study. Sci Rep 2020;10:9624. https://doi.org/10.1038/s41598-020-66598-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anand S, Mande SS. Diet, microbiota and gut-lung connection. Front Microbiol 2018;9:2147. https://doi.org/10.3389/fmicb.2018.02147.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderson JL, Miles C, Tierney AC. Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: a systematic review. J Cyst Fibros 2017;16:186–197. https://doi.org/10.1016/j.jcf.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  4. Antosca KM, Chernikova DA, Price CE et al. Altered stool microbiota of infants with cystic fibrosis shows a reduction in genera associated with immune programming from birth. J Bacteriol. 2019. https://doi.org/10.1128/jb.00274-19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. Front Microbiol 2016;7:1204. https://doi.org/10.3389/fmicb.2016.01204.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arrieta MC, Stiemsma LT, Dimitriu PA et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 2015;7:307ra512. https://doi.org/10.1126/scitranslmed.aab2271.

    Article  CAS  Google Scholar 

  7. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Cmaj 2013;185:385–394. https://doi.org/10.1503/cmaj.121189.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bäckhed F, Roswall J, Peng Y et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015;17:690–703. https://doi.org/10.1016/j.chom.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  9. Barton KL, Chambers S, Anderson AS, Wrieden WL. Time to address the double inequality of differences in dietary intake between Scotland and England. Br J Nutr 2018;120:220–226. https://doi.org/10.1017/s0007114518001435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruzzese E, Callegari ML, Raia V et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS ONE 2014;9:e87796. https://doi.org/10.1371/journal.pone.0087796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burger-van Paassen N, Vincent A, Puiman PJ et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J 2009;420:211–219. https://doi.org/10.1042/bj20082222.

    Article  CAS  PubMed  Google Scholar 

  12. Burke DG, Fouhy F, Harrison MJ et al. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol 2017;17:58. https://doi.org/10.1186/s12866-017-0968-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cait A, Hughes MR, Antignano F et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 2018;11:785–795. https://doi.org/10.1038/mi.2017.75.

    Article  CAS  PubMed  Google Scholar 

  14. Cani PD, Amar J, Iglesias MA et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–1772. https://doi.org/10.2337/db06-1491.

    Article  CAS  PubMed  Google Scholar 

  15. Castellani C, Singer G, Kashofer K et al. The influence of proton pump inhibitors on the fecal microbiome of infants with gastroesophageal reflux—a prospective longitudinal interventional study. Front Cell Infect Microbiol 2017;7:444. https://doi.org/10.3389/fcimb.2017.00444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Centre for Reviews and Dissemination. Systematic Reviews: CRD's gudiance for undertaking reviews in health care, 2009. Retrieved 12th July from https://www.york.ac.uk/media/crd/Systematic_Reviews.pdf

  17. Chichlowski M, Rudolph C. Visceral pain and gastrointestinal microbiome. J Neurogastroenterol Motil 2015;21:172–181. https://doi.org/10.5056/jnm15025.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Coffey MJ, Garg M, Homaira N, Jaffe A, Ooi CY. Probiotics for people with cystic fibrosis. Cochrane Database Syst Rev. 2020;1:Article CD012949. https://doi.org/10.1002/14651858.CD012949.pub2.

  19. Coffey MJ, Nielsen S, Wemheuer B et al. Gut microbiota in children with cystic fibrosis: a taxonomic and functional dysbiosis. Sci Rep 2019;9:18593. https://doi.org/10.1038/s41598-019-55028-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corey M, McLaughlin FJ, Williams M, Levison H. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto. J Clin Epidemiol 1988;41:583–591. https://doi.org/10.1016/0895-4356(88)90063-7.

    Article  CAS  PubMed  Google Scholar 

  21. Crozier DN. Cystic fibrosis: a not-so-fatal disease. Pediatr Clin N Am 1974;21:935–950. https://doi.org/10.1016/s0031-3955(16)33069-3.

    Article  CAS  Google Scholar 

  22. Cystic Fibrosis Trust. Nutritional Management of Cystic Fibrosis. Cystic Fibrosis Trust, 2016.

  23. Cystic Fibrosis Trust. UK Cystic Fibrosis Registry: 2020 Annual Data Report, 2021. Retrieved 27 January from https://www.cysticfibrosis.org.uk/sites/default/files/2021-12/CF_Annual%20Report%202020_V8.pdf.

  24. d’Hennezel E, Abubucker S, Murphy LO, Cullen TW. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling. mSystems. 2017. https://doi.org/10.1128/mSystems.00046-17.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020;12:12. https://doi.org/10.1186/s13073-020-0710-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Freitas MB, Moreira EAM, Tomio C et al. Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis. PLoS ONE 2018;13:e0198457. https://doi.org/10.1371/journal.pone.0198457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Goffau MC, Jallow AT, Sanyang C et al. Gut microbiomes from Gambian infants reveal the development of a non-industrialized Prevotella-based trophic network. Nat Microbiol 2022;7:132–144. https://doi.org/10.1038/s41564-021-01023-6.

    Article  CAS  PubMed  Google Scholar 

  28. Debray D, El Mourabit H, Merabtene F et al. Diet-induced dysbiosis and genetic background synergize with cystic fibrosis transmembrane conductance regulator deficiency to promote cholangiopathy in mice. Hepatol Commun 2018;2:1533–1549. https://doi.org/10.1002/hep4.1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Debyser G, Mesuere B, Clement L et al. Faecal proteomics: a tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. J Cyst Fibros 2016;15:242–250. https://doi.org/10.1016/j.jcf.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  30. del Campo R, Garriga M, Pérez-Aragón A et al. Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 2014;13:716–722. https://doi.org/10.1016/j.jcf.2014.02.007.

    Article  PubMed  Google Scholar 

  31. Dellschaft NS, Ng C, Hoad C et al. Magnetic resonance imaging of the gastrointestinal tract shows reduced small bowel motility and altered chyme in cystic fibrosis compared to controls. J Cyst Fibros. 2021. https://doi.org/10.1016/j.jcf.2021.12.007.

    Article  PubMed  Google Scholar 

  32. Derichs N. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur Respir Rev 2013;22:58–65. https://doi.org/10.1183/09059180.00008412.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108:4554–4561. https://doi.org/10.1073/pnas.1000087107.

    Article  PubMed  Google Scholar 

  34. Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet–microbe–host interaction. Microorganisms. 2019. https://doi.org/10.3390/microorganisms7010019.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dorsaz S, Charretier Y, Girard M et al. Changes in microbiota profiles after prolonged frozen storage of stool suspensions. Front Cell Infect Microbiol 2020;10:77. https://doi.org/10.3389/fcimb.2020.00077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 2002;52:1615–1620. https://doi.org/10.1099/00207713-52-5-1615.

    Article  CAS  PubMed  Google Scholar 

  37. Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl Environ Microbiol 2011;77:8015–8024. https://doi.org/10.1128/aem.05933-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J Cyst Fibros 2013;12:206–215. https://doi.org/10.1016/j.jcf.2012.10.003.

    Article  PubMed  Google Scholar 

  39. Duytschaever G, Huys G, Boulanger L, De Boeck K, Vandamme P. Amoxicillin-clavulanic acid resistance in fecal Enterobacteriaceae from patients with cystic fibrosis and healthy siblings. J Cyst Fibros 2013;12:780–783. https://doi.org/10.1016/j.jcf.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  40. Elborn S. Cystic fibrosis. Lancet 2016;388:2519–2531.

    Article  CAS  PubMed  Google Scholar 

  41. Enaud R, Hooks KB, Barre A et al. Intestinal inflammation in children with cystic fibrosis is associated with crohn’s-like microbiota disturbances. J Clin Med. 2019. https://doi.org/10.3390/jcm8050645.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flass T, Tong S, Frank DN et al. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLoS ONE 2015;10:e0116967. https://doi.org/10.1371/journal.pone.0116967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fouhy F, Ronan NJ, O’Sullivan O et al. A pilot study demonstrating the altered gut microbiota functionality in stable adults with Cystic Fibrosis. Sci Rep 2017;7:6685. https://doi.org/10.1038/s41598-017-06880-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 2018;9:890. https://doi.org/10.3389/fmicb.2018.00890.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gelfond D, Borowitz D. Gastrointestinal complications of cystic fibrosis. Clin Gastroenterol Hepatol. 2013;11:333–342; quiz e330–331. https://doi.org/10.1016/j.cgh.2012.11.006.

  46. Gelfond D, Heltshe S, Ma C et al. Impact of CFTR modulation on intestinal pH, motility, and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin Transl Gastroenterol 2017;8:e81. https://doi.org/10.1038/ctg.2017.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giongo A, Gano KA, Crabb DB et al. Toward defining the autoimmune microbiome for type 1 diabetes. Isme j 2011;5:82–91. https://doi.org/10.1038/ismej.2010.92.

    Article  CAS  PubMed  Google Scholar 

  48. Hansson GC. Mucus and mucins in diseases of the intestinal and respiratory tracts. J Intern Med 2019;285:479–490. https://doi.org/10.1111/joim.12910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harmsen HJM, de Goffau MC. The human gut microbiota. In: Schwiertz A, ed. Cham: Springer; 2016; 95–108.

    Chapter  Google Scholar 

  50. Hartl D, Gaggar A, Bruscia E et al. Innate immunity in cystic fibrosis lung disease. J Cyst Fibros 2012;11:363–382. https://doi.org/10.1016/j.jcf.2012.07.003.

    Article  CAS  PubMed  Google Scholar 

  51. Hayden HS, Eng A, Pope CE et al. Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure. Nat Med 2020;26:215–221. https://doi.org/10.1038/s41591-019-0714-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayee B, Watson KL, Campbell S et al. A high prevalence of chronic gastrointestinal symptoms in adults with cystic fibrosis is detected using tools already validated in other GI disorders. United Eur Gastroenterol J 2019;7:881–888. https://doi.org/10.1177/2050640619841545.

    Article  CAS  Google Scholar 

  53. Henderickx JGE, Zwittink RD, Renes IB et al. Maturation of the preterm gastrointestinal tract can be defined by host and microbial markers for digestion and barrier defense. Sci Rep 2021;11:12808. https://doi.org/10.1038/s41598-021-92222-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci U S A 2019;116:12672–12677. https://doi.org/10.1073/pnas.1904099116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Higgins JP, Altman DG. Assessing risk of bias in included studies. In: Higgins JPT, Deeks JJ, eds. Cochrane Handbook for Systematic Reviews of Interventions. Chichester: Wiley-Blackwell; 2008; 187–241.

    Chapter  Google Scholar 

  56. Higgins JP, Deeks JJ. Selecting studies and collecting data. In: Higgins JPT, Deeks JJ, eds. Cochrane Handbook for Systematic Reviews of Interventions. Chichester: Wiley-Blackwell; 2008; 151–185.

    Chapter  Google Scholar 

  57. Hoen AG, Li J, Moulton LA et al. Associations between gut microbial colonization in early life and respiratory outcomes in cystic fibrosis. J Pediatr. 2015;167:138–147.e131–133. https://doi.org/10.1016/j.jpeds.2015.02.049.

  58. Hoffman LR, Pope CE, Hayden HS et al. Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis. Clin Infect Dis 2014;58:396–399. https://doi.org/10.1093/cid/cit715.

    Article  PubMed  Google Scholar 

  59. Hojo M, Asahara T, Nagahara A et al. Gut microbiota composition before and after use of proton pump inhibitors. Dig Dis Sci 2018;63:2940–2949. https://doi.org/10.1007/s10620-018-5122-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hong S, Yu JW. Prolonged exposure to lipopolysaccharide Induces NLRP3-independent maturation and secretion of interleukin (IL)-1β in macrophages. J Microbiol Biotechnol 2018;28:115–121. https://doi.org/10.4014/jmb.1709.09017.

    Article  CAS  PubMed  Google Scholar 

  61. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:43. https://doi.org/10.1186/1471-2288-14-43.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Imhann F, Bonder MJ, Vich Vila A et al. Proton pump inhibitors affect the gut microbiome. Gut 2016;65:740–748. https://doi.org/10.1136/gutjnl-2015-310376.

    Article  CAS  PubMed  Google Scholar 

  63. Jadin SA, Wu GS, Zhang Z et al. Growth and pulmonary outcomes during the first 2 y of life of breastfed and formula-fed infants diagnosed with cystic fibrosis through the Wisconsin Routine Newborn Screening Program. Am J Clin Nutr 2011;93:1038–1047. https://doi.org/10.3945/ajcn.110.004119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010;5:e9836. https://doi.org/10.1371/journal.pone.0009836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Joanna Briggs Institute. Critical Appraisal Checklist for Cohort Studies, 2017a. Retrieved 12th July from https://jbi.global/sites/default/files/2019-05/JBI_Critical_Appraisal-Checklist_for_Cohort_Studies2017_0.pdf.

  66. Joanna Briggs Institute. Critical Appraisal Checklist for Quasi-Experimental Studies, 2017b. Retrieved 12th July from https://jbi.global/sites/default/files/2019-05/JBI_Quasi-Experimental_Appraisal_Tool2017_0.pdf.

  67. Joanna Briggs Institute. Critical Appraisal Checklist for Randomized Controlled Trials, 2017c. Retrieved 12th July from https://jbi.global/sites/default/files/2019-05/JBI_RCTs_Appraisal_tool2017_0.pdf.

  68. Johnson AJ, Vangay P, Al-Ghalith GA et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 2019;25:789-802.e785. https://doi.org/10.1016/j.chom.2019.05.005.

    Article  CAS  PubMed  Google Scholar 

  69. Kanhere M, He J, Chassaing B et al. Bolus weekly vitamin D3 supplementation impacts gut and airway microbiota in adults with cystic fibrosis: a double-blind, randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab 2018;103:564–574. https://doi.org/10.1210/jc.2017-01983.

    Article  PubMed  Google Scholar 

  70. Kastl AJ Jr, Terry NA, Wu GD, Albenberg LG. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol 2020;9:33–45. https://doi.org/10.1016/j.jcmgh.2019.07.006.

    Article  PubMed  Google Scholar 

  71. Kelly CJ, Zheng L, Campbell EL et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015;17:662–671. https://doi.org/10.1016/j.chom.2015.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kerem E, Viviani L, Zolin A et al. Factors associated with FEV1 decline in cystic fibrosis: analysis of the ECFS patient registry. Eur Respir J 2014;43:125–133. https://doi.org/10.1183/09031936.00166412.

    Article  PubMed  Google Scholar 

  73. Khokhlova EV, Smeianov VV, Efimov BA, Kafarskaia LI, Pavlova SI, Shkoporov AN. Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiol Immunol 2012;56:27–39. https://doi.org/10.1111/j.1348-0421.2011.00398.x.

    Article  CAS  PubMed  Google Scholar 

  74. Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut 2016;65:1100–1109. https://doi.org/10.1136/gutjnl-2014-309059.

    Article  CAS  PubMed  Google Scholar 

  75. Korpela K, Blakstad EW, Moltu SJ et al. Intestinal microbiota development and gestational age in preterm neonates. Sci Rep 2018;8:2453. https://doi.org/10.1038/s41598-018-20827-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Korpela K, Salonen A, Virta LJ et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 2016;7:10410. https://doi.org/10.1038/ncomms10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kristensen M, Prevaes S, Kalkman G et al. Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment. J Cyst Fibros 2020;19:553–561. https://doi.org/10.1016/j.jcf.2020.04.007.

    Article  CAS  PubMed  Google Scholar 

  78. Kristensen MI, de Winter-de Groot KM, Berkers G et al. Individual and group response of treatment with ivacaftor on airway and gut microbiota in people with CF and a S1251N mutation. J Pers Med. 2021. https://doi.org/10.3390/jpm11050350.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kumar PS, Brooker MR, Dowd SE, Camerlengo T. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS ONE 2011;6:e20956. https://doi.org/10.1371/journal.pone.0020956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Law MSD, Pollock N, Letts L, Bosch J, Westmorland M. Guidelines for Critical Review Form-Quantitative Studies, 1998. Retrieved 12th July from https://healthsci.mcmaster.ca/docs/librariesprovider130/default-document-library/guidelines-for-critical-review-form-quantiative-studies-english.pdf?sfvrsn=ee9f6c19_2.

  81. Li L, Krause L, Somerset S. Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis. Clin Nutr 2017;36:1097–1104. https://doi.org/10.1016/j.clnu.2016.06.029.

    Article  CAS  PubMed  Google Scholar 

  82. Li L, Somerset S. Associations between flavonoid intakes and gut microbiota in a group of adults with cystic fibrosis. Nutrients. 2018. https://doi.org/10.3390/nu10091264.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liang X, Bouhamdan M, Hou X et al. Intestinal dysbiosis in young cystic fibrosis rabbits. J Pers Med. 2021. https://doi.org/10.3390/jpm11020132.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj 2009;339:b2700. https://doi.org/10.1136/bmj.b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Loman BR, Shrestha CL, Thompson R et al. Age and environmental exposures influence the fecal bacteriome of young children with cystic fibrosis. Pediatr Pulmonol 2020;55:1661–1670. https://doi.org/10.1002/ppul.24766.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. Isme j 2011;5:169–172. https://doi.org/10.1038/ismej.2010.133.

    Article  PubMed  Google Scholar 

  87. Ma J, Li Z, Zhang W et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep 2020;10:15792. https://doi.org/10.1038/s41598-020-72635-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Madan JC, Koestler DC, Stanton BA et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. Mbio. 2012. https://doi.org/10.1128/mBio.00251-12.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Malagelada C, Bendezú RA, Seguí S et al. Motor dysfunction of the gut in cystic fibrosis. Neurogastroenterol Motil 2020;32:e13883. https://doi.org/10.1111/nmo.13883.

    Article  CAS  PubMed  Google Scholar 

  90. Manor O, Levy R, Pope CE et al. Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci Rep 2016;6:22493. https://doi.org/10.1038/srep22493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Marsh R, Gavillet H, Hanson L et al. Intestinal function and transit associate with gut microbiota dysbiosis in cystic fibrosis. J Cyst Fibros 2022;21:506–513. https://doi.org/10.1016/j.jcf.2021.11.014.

    Article  CAS  PubMed  Google Scholar 

  92. Martínez N, Hidalgo-Cantabrana C, Delgado S, Margolles A, Sánchez B. Filling the gap between collection, transport and storage of the human gut microbiota. Sci Rep 2019;9:8327. https://doi.org/10.1038/s41598-019-44888-8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Matamouros S, Hayden HS, Hager KR et al. Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Proc Natl Acad Sci U S A 2018;115:1605–1610. https://doi.org/10.1073/pnas.1714373115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Matera G, Muto V, Vinci M et al. Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol 2009;16:1804–1809. https://doi.org/10.1128/cvi.00310-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev 2017;278:277–295. https://doi.org/10.1111/imr.12556.

    Article  CAS  PubMed  Google Scholar 

  96. Meeker SM, Mears KS, Sangwan N et al. CFTR dysregulation drives active selection of the gut microbiome. PLoS Pathog 2020;16:e1008251. https://doi.org/10.1371/journal.ppat.1008251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Middleton PG, Mall MA, Dřevínek P et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 2019;381:1809–1819. https://doi.org/10.1056/NEJMoa1908639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Miragoli F, Federici S, Ferrari S et al. Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota. FEMS Microbiol Ecol. 2017. https://doi.org/10.1093/femsec/fiw230.

    Article  PubMed  Google Scholar 

  99. Moen IE, Nilsson K, Andersson A et al. Dietary intake and nutritional status in a Scandinavian adult cystic fibrosis-population compared with recommendations. Food Nutr Res. 2011. https://doi.org/10.3402/fnr.v55i0.7561.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  101. National Center for Chronic Disease Prevention and Health Promotion. Breastfeeding Rates, 2020. https://www.cdc.gov/breastfeeding/data/nis_data/index.htm.

  102. Neri LCL, Taminato M, Silva Filho L. Systematic review of probiotics for cystic fibrosis patients: moving forward. J Pediatr Gastroenterol Nutr 2019;68:394–399. https://doi.org/10.1097/mpg.0000000000002185.

    Article  PubMed  Google Scholar 

  103. Nielsen S, Needham B, Leach ST et al. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci Rep 2016;6:24857. https://doi.org/10.1038/srep24857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Oddy WH. Breastfeeding, childhood asthma, and allergic disease. Ann Nutr Metab 2017;70:26–36. https://doi.org/10.1159/000457920.

    Article  PubMed  Google Scholar 

  105. Ooi CY, Syed SA, Rossi L et al. Impact of CFTR modulation with ivacaftor on gut microbiota and intestinal inflammation. Sci Rep 2018;8:17834. https://doi.org/10.1038/s41598-018-36364-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009;139:1619–1625. https://doi.org/10.3945/jn.109.104638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Piccolo F, Tai AS, Ee H, Mulrennan S, Bell S, Ryan G. Clostridium difficile infection in cystic fibrosis: an uncommon but life-threatening complication. Respirol Case Rep 2017;5:e00204. https://doi.org/10.1002/rcr2.204.

    Article  PubMed  Google Scholar 

  108. PROSPERO. York, England: Centre for Reviews and Dissemination, University of York, . Retrieved 31st of July from https://www.crd.york.ac.uk/PROSPERO/#searchadvanced.

  109. Qin N, Yang F, Li A et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014;513:59–64. https://doi.org/10.1038/nature13568.

    Article  CAS  PubMed  Google Scholar 

  110. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016;469:967–977. https://doi.org/10.1016/j.bbrc.2015.12.083.

    Article  CAS  PubMed  Google Scholar 

  111. Ray KJ, Santee C, McCauley K, Panzer AR, Lynch SV. Gut Bifidobacteria enrichment following oral Lactobacillus-supplementation is associated with clinical improvements in children with cystic fibrosis. BMC Pulm Med 2022;22:287. https://doi.org/10.1186/s12890-022-02078-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Riedel CU, Foata F, Philippe D, Adolfsson O, Eikmanns BJ, Blum S. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-kappaB activation. World J Gastroenterol 2006;12:3729–3735. https://doi.org/10.3748/wjg.v12.i23.3729.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ruohtula T, de Goffau MC, Nieminen JK et al. Maturation of gut microbiota and circulating regulatory T cells and development of IgE sensitization in early life. Front Immunol 2019;10:2494. https://doi.org/10.3389/fimmu.2019.02494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med 2019;69:93–106. https://doi.org/10.1016/j.mam.2019.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Scambler T, Jarosz-Griffiths HH, Lara-Reyna S et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. Elife. 2019. https://doi.org/10.7554/eLife.49248.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Scanlan PD, Buckling A, Kong W, Wild Y, Lynch SV, Harrison F. Gut dysbiosis in cystic fibrosis. J Cyst Fibros 2012;11:454–455. https://doi.org/10.1016/j.jcf.2012.03.007.

    Article  PubMed  Google Scholar 

  117. Scher JU, Ubeda C, Artacho A et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 2015;67:128–139. https://doi.org/10.1002/art.38892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schippa S, Iebba V, Santangelo F et al. Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients. PLoS ONE 2013;8:e6117678. https://doi.org/10.1371/journal.pone.0061176.

    Article  CAS  Google Scholar 

  119. Schulthess J, Pandey S, Capitani M et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 2019;50:432–445.e437. https://doi.org/10.1016/j.immuni.2018.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schwenger KJP, Clermont-Dejean N, Allard JP. The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Rep 2019;1:214–226. https://doi.org/10.1016/j.jhepr.2019.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016;164:337–340. https://doi.org/10.1016/j.cell.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  122. Sidhu H, Hoppe B, Hesse A et al. Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 1998;352:1026–1029. https://doi.org/10.1016/s0140-6736(98)03038-4.

    Article  CAS  PubMed  Google Scholar 

  123. Simrén M, Barbara G, Flint HJ et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013;62:159–176. https://doi.org/10.1136/gutjnl-2012-302167.

    Article  PubMed  Google Scholar 

  124. Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther 2016;164:144–151. https://doi.org/10.1016/j.pharmthera.2016.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Smyth RL, Croft NM, O’Hea U, Marshall TG, Ferguson A. Intestinal inflammation in cystic fibrosis. Arch Dis Child 2000;82:394–399. https://doi.org/10.1136/adc.82.5.394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stallings VA, Sainath N, Oberle M, Bertolaso C, Schall JI. Energy balance and mechanisms of weight gain with ivacaftor treatment of cystic fibrosis gating mutations. J Pediatr 2018;201:229-237.e224. https://doi.org/10.1016/j.jpeds.2018.05.018.

    Article  PubMed  Google Scholar 

  127. Stewart CJ, Ajami NJ, O’Brien JL et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583–588. https://doi.org/10.1038/s41586-018-0617-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Szentpetery S, Fernandez GS, Schechter MS, Jain R, Flume PA, Fink AK. Obesity in cystic fibrosis: prevalence, trends and associated factors data from the US cystic fibrosis foundation patient registry. J Cyst Fibros. 2022. https://doi.org/10.1016/j.jcf.2022.03.010.

    Article  PubMed  Google Scholar 

  129. Taylor SL, Leong LEX, Sims SK et al. The cystic fibrosis gut as a potential source of multidrug resistant pathogens. J Cyst Fibros 2021;20:413–420. https://doi.org/10.1016/j.jcf.2020.11.009.

    Article  CAS  PubMed  Google Scholar 

  130. Theriot CM, Koenigsknecht MJ, Carlson PE Jr et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 2014;5:3114. https://doi.org/10.1038/ncomms4114.

    Article  CAS  PubMed  Google Scholar 

  131. Trivedi R, Barve K. Gut microbiome a promising target for management of respiratory diseases. Biochem J 2020;477:2679–2696. https://doi.org/10.1042/bcj20200426.

    Article  CAS  PubMed  Google Scholar 

  132. Trompette A, Gollwitzer ES, Pattaroni C et al. Dietary fiber confers protection against flu by shaping Ly6c(−) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity 2018;48:992–1005.e1008. https://doi.org/10.1016/j.immuni.2018.04.022.

    Article  CAS  PubMed  Google Scholar 

  133. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. Bmj 2018;361:k2179. https://doi.org/10.1136/bmj.k2179.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Valles-Colomer M, Falony G, Darzi Y et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 2019;4:623–632. https://doi.org/10.1038/s41564-018-0337-x.

    Article  CAS  PubMed  Google Scholar 

  135. Van Biervliet S, Declercq D, Somerset S. Clinical effects of probiotics in cystic fibrosis patients: a systematic review. Clin Nutr ESPEN 2017;18:37–43. https://doi.org/10.1016/j.clnesp.2017.01.007.

    Article  PubMed  Google Scholar 

  136. Van Biervliet S, Hauser B, Verhulst S et al. Probiotics in cystic fibrosis patients: a double blind crossover placebo controlled study: Pilot study from the ESPGHAN Working Group on Pancreas/CF. Clin Nutr ESPEN 2018;27:59–65. https://doi.org/10.1016/j.clnesp.2018.06.008.

    Article  PubMed  Google Scholar 

  137. Van den Abbeele P, Belzer C, Goossens M et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. Isme j 2013;7:949–961. https://doi.org/10.1038/ismej.2012.158.

    Article  CAS  PubMed  Google Scholar 

  138. van den Bogert B, Erkus O, Boekhorst J et al. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol 2013;85:376–388. https://doi.org/10.1111/1574-6941.12127.

    Article  CAS  PubMed  Google Scholar 

  139. Vatanen T, Kostic AD, d’Hennezel E et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 2016;165:842–853. https://doi.org/10.1016/j.cell.2016.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vernocchi P, Del Chierico F, Quagliariello A, Ercolini D, Lucidi V, Putignani L. A metagenomic and in silico functional prediction of gut microbiota profiles may concur in discovering new cystic fibrosis patient-targeted probiotics. Nutrients. 2017. https://doi.org/10.3390/nu9121342.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Vernocchi P, Del Chierico F, Russo A et al. Gut microbiota signatures in cystic fibrosis: loss of host CFTR function drives the microbiota enterophenotype. PLoS ONE 2018;13:e0208171. https://doi.org/10.1371/journal.pone.0208171.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Vieira-Silva S, Falony G, Belda E et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020;581:310–315. https://doi.org/10.1038/s41586-020-2269-x.

    Article  CAS  PubMed  Google Scholar 

  143. Virta L, Auvinen A, Helenius H, Huovinen P, Kolho KL. Association of repeated exposure to antibiotics with the development of pediatric Crohn’s disease—a nationwide, register-based Finnish case-control study. Am J Epidemiol 2012;175:775–784. https://doi.org/10.1093/aje/kwr400.

    Article  PubMed  Google Scholar 

  144. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 2007;4:e296. https://doi.org/10.1371/journal.pmed.0040296.

    Article  Google Scholar 

  145. Waclawiková B, Codutti A, Alim K, El Aidy S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 2022;14:1997296. https://doi.org/10.1080/19490976.2021.1997296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang T, Goyal A, Dubinkina V, Maslov S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput Biol 2019;15:e1007524. https://doi.org/10.1371/journal.pcbi.1007524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang Y, Leong LEX, Keating RL et al. Opportunistic bacteria confer the ability to ferment prebiotic starch in the adult cystic fibrosis gut. Gut Microbes 2019;10:367–381. https://doi.org/10.1080/19490976.2018.1534512.

    Article  CAS  PubMed  Google Scholar 

  148. Wei Z, Cao S, Liu S et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 2016;7:46158–46172. https://doi.org/10.18632/oncotarget.10064.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and Type 2 diabetes. J Nutr 2017;147:1468s–1475s. https://doi.org/10.3945/jn.116.240754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yamamoto EA, Jørgensen TN. Relationships between vitamin D, Gut microbiome, and systemic autoimmunity. Front Immunol 2019;10:3141. https://doi.org/10.3389/fimmu.2019.03141.

    Article  CAS  PubMed  Google Scholar 

  151. Yang Y, Jobin C. Microbial imbalance and intestinal pathologies: connections and contributions. Dis Model Mech 2014;7:1131–1142. https://doi.org/10.1242/dmm.016428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yıldırım S, Nalbantoğlu ÖU, Bayraktar A et al. Stratification of the gut microbiota composition landscape across the Alzheimer’s Disease Continuum in a Turkish Cohort. mSystems 2022;7:e0000422-23. https://doi.org/10.1128/msystems.00004-22.

    Article  PubMed  Google Scholar 

  153. Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front Cell Infect Microbiol 2019;9:239. https://doi.org/10.3389/fcimb.2019.00239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang J, Haines C, Watson AJM et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989–2012: a matched case–control study. Gut 2019;68:1971–1978. https://doi.org/10.1136/gutjnl-2019-318593.

    Article  CAS  PubMed  Google Scholar 

  155. Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab Res Rev 2018;34:e3043. https://doi.org/10.1002/dmrr.3043.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhou Z, Sun B, Yu D, Zhu C. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol 2022;12:834485. https://doi.org/10.3389/fcimb.2022.834485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Artwork by Laura & John Caley ©.

Funding

This work was supported by the Cystic Fibrosis Trust [SRC 012].

Author information

Authors and Affiliations

Authors

Contributions

LRC contributed toward conceptualization, data curation, formal analysis, methodology, project administration, writing—original draft and review & editing; MCG contributed toward formal analysis, methodology, validation, writing—review & editing. AF contributed toward writing—review & editing. JP contributed toward writing—review & editing. BM contributed toward writing—review & editing. HW contributed toward data curation, formal analysis, methodology, supervision, validation, writing—original draft and review & editing and supervision. DGP contributed toward conceptualization data curation, formal analysis, methodology, supervision, validation, and writing—original draft and review & editing.

Corresponding author

Correspondence to D. G. Peckham.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 553 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caley, L.R., White, H., de Goffau, M.C. et al. Cystic Fibrosis-Related Gut Dysbiosis: A Systematic Review. Dig Dis Sci 68, 1797–1814 (2023). https://doi.org/10.1007/s10620-022-07812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07812-1

Keywords

Navigation