Skip to main content

Advertisement

Log in

Esophageal Functional Lumen Imaging Probe (FLIP): How Can FLIP Enhance Your Clinical Practice?

  • Mentored Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Recent innovations in esophageal diagnostic testing have enhanced gastroenterology clinical practice by facilitating more nuanced and advanced evaluation of esophageal symptoms. Among these pivotal advances is the FDA-approved functional lumen imaging probe (FLIP), which utilizes impedance planimetry via volumetric distension of a catheter-mounted balloon at the time of sedated upper endoscopy, to acquire esophageal dimensions and pressures. In real time, FLIP can display cross-sectional areas (CSA) and distensibility indices (ratios of CSA to intra-balloon pressures) throughout the esophagus, most notably at the esophagogastric junction, as well as secondary peristaltic esophageal body contractile patterns. As the use of FLIP has progressively spread and permeated into the practice of clinical gastroenterology since its introduction, increasing data on and experiences with its applications have accumulated to guide its utility in clinical practice. In this current review developed for gastroenterologists and foregut surgeons across clinical practice, we provide an introduction to FLIP technology and metrics and discuss the clinical scenarios in which performance of or referral for FLIP may be helpful in the evaluation and management of patients with commonly encountered esophageal symptoms and disorders. Specifically, we discuss the potential applications and limitations of FLIP as a complementary diagnostic modality in patients with non-obstructive dysphagia, established or suspected achalasia spectrum disorders, eosinophilic esophagitis, gastroesophageal reflux disease and those undergoing esophageal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

The authors thank Dr. C. Prakash Gyawali from the Washington University School of Medicine for providing the image for c

Similar content being viewed by others

Abbreviations

CSA:

Cross-sectional area

DI:

Distensibility index

EGJ:

Esophagogastric junction

EGJOO:

Esophagogastric junction outflow obstruction

EOE:

Eosinophilic esophagitis

FLIP:

Functional lumen imaging probe

GERD:

Gastroesophageal reflux disease

HRM:

High-resolution manometry

IRP:

Integrated relaxation pressure

LES:

Lower esophageal sphincter

POEM:

Per-oral endoscopic myotomy

RAC:

Repetitive antegrade contractions

RRC:

Repetitive retrograde contractions

References

  1. Gyawali CP, Carlson D, Chen J, Patel A, Wong R, Yadlapati R. American College of Gastroenterology clinical guideline: clinical use of esophageal physiologic testing. Am J Gastroenterol. 2020. (in press).

  2. Gyawali CP. High resolution manometry: the Ray Clouse legacy. Neurogastroenterol Motil. 2012;24:2–4.

    PubMed  Google Scholar 

  3. Kahrilas PJ, Bredenoord AJ, Fox M, et al. The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol Motil. 2015;27:160–174.

    CAS  PubMed  Google Scholar 

  4. Dhawan I, O’Connell B, Patel A, et al. Utility of esophageal high-resolution manometry in clinical practice: first, do HRM. Dig Dis Sci. 2018;63:3178–3186. https://doi.org/10.1007/s10620-018-5300-4.

    Article  PubMed  Google Scholar 

  5. Patel A, Sayuk GS, Gyawali CP. Parameters on esophageal pH-impedance monitoring that predict outcomes of patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol. 2015;13:884–891.

    PubMed  Google Scholar 

  6. Patel A, Sayuk GS, Kushnir VM, et al. GERD phenotypes from pH-impedance monitoring predict symptomatic outcomes on prospective evaluation. Neurogastroenterol Motil. 2016;28:513–521.

    CAS  PubMed  Google Scholar 

  7. Gyawali CP, Kahrilas PJ, Savarino E, et al. Modern diagnosis of GERD: the Lyon Consensus. Gut. 2018;67:1351–1362.

    PubMed  PubMed Central  Google Scholar 

  8. Ayazi S, Lipham JC, Portale G, et al. Bravo catheter-free pH monitoring: normal values, concordance, optimal diagnostic thresholds, and accuracy. Clin Gastroenterol Hepatol. 2009;7:60–67.

    PubMed  Google Scholar 

  9. Frazzoni M, Savarino E, de Bortoli N, et al. Analyses of the post-reflux swallow-induced peristaltic wave index and nocturnal baseline impedance parameters increase the diagnostic yield of impedance-pH monitoring of patients with reflux disease. Clin Gastroenterol Hepatol. 2016;14:40–46.

    PubMed  Google Scholar 

  10. Patel A, Wang D, Sainani N, et al. Distal mean nocturnal baseline impedance on pH-impedance monitoring predicts reflux burden and symptomatic outcome in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2016;44:890–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel D, Higginbotham T, Slaughter J, et al. Development and validation of a mucosal impedance contour analysis system to distinguish esophageal disorders. Gastroenterology. 2019;156:1617.

    PubMed  PubMed Central  Google Scholar 

  12. Rengarajan A, Savarino E, Della Coletta M, et al. Mean nocturnal baseline impedance correlates with symptom outcome when acid exposure time is inconclusive on esophageal reflux monitoring. Clin Gastroenterol Hepatol. 2020;18:589–595.

    PubMed  Google Scholar 

  13. de Bortoli N, Martinucci I, Savarino E, et al. Association between baseline impedance values and response proton pump inhibitors in patients with heartburn. Clin Gastroenterol Hepatol. 2015;13:1082-8e1.

    Google Scholar 

  14. Hirano I, Pandolfino J, Boeckxstaens G. Functional lumen imaging probe for the management of esophageal disorders: expert review from the clinical practice updates committee of the AGA Institute. Clin Gastroenterol Hepatol. 2017;15:325–334.

    PubMed  PubMed Central  Google Scholar 

  15. Gregersen H, Stodkilde-Jorgensen H, Djurhuus JC, et al. The four-electrode impedance technique: a method for investigation of compliance in luminal organs. Clin Phys Physiol Meas. 1988;9:61–64.

    PubMed  Google Scholar 

  16. Gregersen H, Djurhuus JC. Impedance planimetry: a new approach to biomechanical intestinal wall properties. Dig Dis. 1991;9:332–340.

    CAS  PubMed  Google Scholar 

  17. Orvar KB, Gregersen H, Christensen J. Biomechanical characteristics of the human esophagus. Dig Dis Sci. 1993;38:197–205. https://doi.org/10.1007/BF01307535.

    Article  CAS  PubMed  Google Scholar 

  18. Rao SS, Hayek B, Summers RW. Impedance planimetry: an integrated approach for assessing sensory, active, and passive biomechanical properties of the human esophagus. Am J Gastroenterol. 1995;90:431–438.

    CAS  PubMed  Google Scholar 

  19. Rao SS, Gregersen H, Hayek B, et al. Unexplained chest pain: the hypersensitive, hyperreactive, and poorly compliant esophagus. Ann Intern Med. 1996;124:950–958.

    CAS  PubMed  Google Scholar 

  20. Pandolfino JE, Shi G, Trueworthy B, et al. Esophagogastric junction opening during relaxation distinguishes nonhernia reflux patients, hernia patients, and normal subjects. Gastroenterology. 2003;125:1018–1024.

    PubMed  Google Scholar 

  21. McMahon B, Frøkjær JB, Drewes AM, et al. A new measurement of oesophago-gastric junction competence. Neurogastroenterol Motil. 2004;16:543–546.

    CAS  PubMed  Google Scholar 

  22. Kwiatek MA, Kahrilas PJ, Soper NJ, et al. Esophagogastric junction distensibility after fundoplication assessed with a novel functional luminal imaging probe. J Gastrointest Surg. 2010;14:268–276.

    PubMed  PubMed Central  Google Scholar 

  23. Rohof WO, Hirsch DP, Kessing BF, et al. Efficacy of treatment for patients with achalasia depends on the distensibility of the esophagogastric junction. Gastroenterology. 2012;143:328–335.

    PubMed  Google Scholar 

  24. Pandolfino JE, de Ruigh A, Nicodème F, et al. Distensibility of the esophagogastric junction assessed with the functional lumen imaging probe (FLIP™) in achalasia patients. Neurogastroenterol Motil. 2013;25:496-e368.

    Google Scholar 

  25. Kwiatek MA, Pandolfino JE, Hirano I, et al. Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest Endosc. 2010;72:272–278.

    PubMed  PubMed Central  Google Scholar 

  26. Bianca A, Schindler V, Schnurre L, et al. Endoscope presence during endoluminal functional lumen imaging probe (FLIP) influences FLIP metrics in the evaluation of esophageal dysmotility. Neurogastroenterol Motil. 2020;32:e13823.

    PubMed  Google Scholar 

  27. Pandolfino JE, de Ruigh A, Nicodeme F, et al. Distensibility of the esophagogastric junction assessed with the functional lumen imaging probe (FLIP) in achalasia patients. Neurogastroenterol Motil. 2013;25:496–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carlson DA, Lin Z, Kahrilas PJ, et al. The functional lumen imaging probe detects esophageal contractility not observed with manometry in patients with achalasia. Gastroenterology. 2015;149:1742–1751.

    PubMed  PubMed Central  Google Scholar 

  29. Carlson DA, Kahrilas PJ, Lin Z, et al. Evaluation of esophageal motility utilizing the functional lumen imaging probe. Am J Gastroenterol. 2016;111:1726–1735.

    PubMed  PubMed Central  Google Scholar 

  30. Carlson DA, Kou W, Lin Z, et al. Normal values of esophageal distensibility and distension-induced contractility measured by functional luminal imaging probe panometry. Clin Gastroenterol Hepatol. 2019;17:674–681.e1.

    PubMed  Google Scholar 

  31. Triggs JR, Carlson DA, Beveridge C, et al. Functional luminal imaging probe panometry identifies achalasia-type esophagogastric junction outflow obstruction. Clin Gastroenterol Hepatol. 2019. https://doi.org/10.1016/j.cgh.2019.11.037.

    Article  PubMed  Google Scholar 

  32. Schatzki R. The lower esophageal ring. Long term follow-up of symptomatic and asymptomatic rings. Am J Roentgenol Radium Ther Nucl Med. 1963;90:805–810.

    CAS  PubMed  Google Scholar 

  33. Carlson DA, Hirano I, Zalewski A, et al. Improvement in esophageal distensibility in response to medical and diet therapy in eosinophilic esophagitis. Clin Transl Gastroenterol. 2017;8:e119.

    PubMed  PubMed Central  Google Scholar 

  34. Rooney KP, Baumann AJ, Donnan E, et al. Esophagogastric junction opening parameters are consistently abnormal in untreated achalasia. Clin Gastroenterol Hepatol. 2020. https://doi.org/10.1016/j.cgh.2020.03.069.

    Article  PubMed  Google Scholar 

  35. Carlson DA, Gyawali CP, Kahrilas PJ, et al. Esophageal motility classification can be established at the time of endoscopy: a study evaluating real-time functional luminal imaging probe panometry. Gastrointest Endosc. 2019;90:915–923.e1.

    PubMed  Google Scholar 

  36. Baumann AJ, Donnan EN, Triggs JR, et al. Normal functional luminal imaging probe panometry findings associate with lack of major esophageal motility disorder on high-resolution manometry. Clin Gastroenterol Hepatol. 2020. https://doi.org/10.1016/j.cgh.2020.03.040.

    Article  PubMed  Google Scholar 

  37. Patel A, Posner S, Gyawali CP. Esophageal high-resolution manometry in gastroesophageal reflux disease. Jama. 2018;320:1279–1280.

    PubMed  Google Scholar 

  38. Khashab MA, Vela MF, Thosani N, et al. ASGE guideline on the management of achalasia. Gastrointest Endosc. 2020;91:213–227.e6.

    PubMed  Google Scholar 

  39. Oude Nijhuis RAB, Zaninotto G, Roman S, et al. European guidelines on achalasia: United European Gastroenterology and European Society of Neurogastroenterology and Motility recommendations. United Eur Gastroenterol J. 2020;8:13–33.

    CAS  Google Scholar 

  40. Rieder E, Swanstrom LL, Perretta S, et al. Intraoperative assessment of esophagogastric junction distensibility during per oral endoscopic myotomy (POEM) for esophageal motility disorders. Surg Endosc. 2013;27:400–405.

    PubMed  Google Scholar 

  41. Chen JW, Rubenstein JH. Esophagogastric junction distensibility assessed using the functional lumen imaging probe. World J Gastroenterol. 2017;23:1289–1297.

    PubMed  PubMed Central  Google Scholar 

  42. Ponds FA, Bredenoord AJ, Kessing BF, et al. Esophagogastric junction distensibility identifies achalasia subgroup with manometrically normal esophagogastric junction relaxation. Neurogastroenterol Motil. 2017;29:e12908.

    Google Scholar 

  43. Kim E, Yoo IK, Yon DK, et al. Characteristics of a subset of achalasia with normal integrated relaxation pressure. J Neurogastroenterol Motil. 2020;26:274–280.

    PubMed  PubMed Central  Google Scholar 

  44. Carlson DA, Kou W, Pandolfino JE. The rhythm and rate of distension-induced esophageal contractility: a physiomarker of esophageal function. Neurogastroenterol Motil. 2020;32:e13794.

    PubMed  Google Scholar 

  45. Campagna RAJ, Carlson DA, Hungness ES, et al. Intraoperative assessment of esophageal motility using FLIP during myotomy for achalasia. Surg Endosc. 2019;34:2593–2600.

    PubMed  Google Scholar 

  46. Teitelbaum EN, Soper NJ, Pandolfino JE, et al. Esophagogastric junction distensibility measurements during Heller myotomy and POEM for achalasia predict postoperative symptomatic outcomes. Surg Endosc. 2015;29:522–528.

    PubMed  Google Scholar 

  47. Jain AS, Carlson DA, Triggs J, et al. Esophagogastric junction distensibility on functional lumen imaging probe topography predicts treatment response in achalasia-anatomy matters! Am J Gastroenterol. 2019;114:1455–1463.

    PubMed  Google Scholar 

  48. Verlaan T, Rohof WO, Bredenoord AJ, et al. Effect of peroral endoscopic myotomy on esophagogastric junction physiology in patients with achalasia. Gastrointest Endosc. 2013;78:39–44.

    PubMed  Google Scholar 

  49. Yoo IK, Choi SA, Kim WH, et al. Assessment of clinical outcomes after peroral endoscopic myotomy via esophageal distensibility measurements with the endoluminal functional lumen imaging probe. Gut Liver. 2019;13:32–39.

    PubMed  Google Scholar 

  50. Perretta S, Dallemagne B, Allemann P, et al. Multimedia manuscript. Heller myotomy and intraluminal fundoplication: a NOTES technique. Surg Endosc. 2010;24:2903.

    PubMed  Google Scholar 

  51. Perretta S, Dallemagne B, Donatelli G, et al. Transoral endoscopic esophageal myotomy based on esophageal function testing in a survival porcine model. Gastrointest Endosc. 2011;73:111–116.

    PubMed  Google Scholar 

  52. Su B, Callahan ZM, Novak S, et al. Using impedance planimetry (EndoFLIP) to evaluate myotomy and predict outcomes after surgery for achalasia. J Gastrointest Surg. 2020;24:964–971.

    PubMed  Google Scholar 

  53. Teitelbaum EN, Boris L, Arafat FO, et al. Comparison of esophagogastric junction distensibility changes during POEM and Heller myotomy using intraoperative FLIP. Surg Endosc. 2013;27:4547–4555.

    PubMed  Google Scholar 

  54. Wu PI, Szczesniak MM, Craig PI, et al. Novel intra-procedural distensibility measurement accurately predicts immediate outcome of pneumatic dilatation for idiopathic achalasia. Am J Gastroenterol. 2018;113:205–212.

    CAS  PubMed  Google Scholar 

  55. Kappelle WF, Bogte A, Siersema PD. Hydraulic dilation with a shape-measuring balloon in idiopathic achalasia: a feasibility study. Endoscopy. 2015;47:1028–1034.

    PubMed  Google Scholar 

  56. Hirano I, Chan ES, Rank MA, et al. AGA institute and the joint task force on allergy-immunology practice parameters clinical guidelines for the management of eosinophilic esophagitis. Gastroenterology. 2020;158:1776–1786.

    PubMed  Google Scholar 

  57. Posner S, Boyd A, Patel A. Dysphagia in a 34-year-old woman. JAMA. 2020;323:660–661. https://doi.org/10.1001/jama.2019.19121.

    Article  Google Scholar 

  58. Gentile N, Katzka D, Ravi K, et al. Oesophageal narrowing is common and frequently under-appreciated at endoscopy in patients with oesophageal eosinophilia. Aliment Pharmacol Ther. 2014;40:1333–1340.

    CAS  PubMed  Google Scholar 

  59. Kwiatek MA, Hirano I, Kahrilas PJ, et al. Mechanical properties of the esophagus in eosinophilic esophagitis. Gastroenterology. 2011;140:82–90.

    PubMed  Google Scholar 

  60. Lin Z, Kahrilas PJ, Xiao Y, et al. Functional luminal imaging probe topography: an improved method for characterizing esophageal distensibility in eosinophilic esophagitis. Therap Adv Gastroenterol. 2013;6:97–107.

    PubMed  PubMed Central  Google Scholar 

  61. Carlson DA, Lin Z, Hirano I, et al. Evaluation of esophageal distensibility in eosinophilic esophagitis: an update and comparison of functional lumen imaging probe analytic methods. Neurogastroenterol Motil. 2016;28:1844–1853.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nicodeme F, Hirano I, Chen J, et al. Esophageal distensibility as a measure of disease severity in patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2013;11:1101–1107.e1.

    PubMed  PubMed Central  Google Scholar 

  63. Menard-Katcher C, Benitez AJ, Pan Z, et al. Influence of age and eosinophilic esophagitis on esophageal distensibility in a pediatric cohort. Am J Gastroenterol. 2017;112:1466–1473.

    PubMed  PubMed Central  Google Scholar 

  64. Chen JW, Pandolfino JE, Lin Z, et al. Severity of endoscopically identified esophageal rings correlates with reduced esophageal distensibility in eosinophilic esophagitis. Endoscopy. 2016;48:794–801.

    PubMed  PubMed Central  Google Scholar 

  65. Ng K, Mogul D, Hollier J, et al. Utility of functional lumen imaging probe in esophageal measurements and dilations: a single pediatric center experience. Surg Endosc. 2020;34:1294–1299.

    PubMed  Google Scholar 

  66. Wu PI, Szczesniak MM, Maclean J, et al. Clinical utility of a functional lumen imaging probe in management of dysphagia following head and neck cancer therapies. Endoscopy. 2017;49:848–854.

    PubMed  Google Scholar 

  67. Gyawali CP, Roman S, Bredenoord AJ, et al. Classification of esophageal motor findings in gastro-esophageal reflux disease: conclusions from an international consensus group. Neurogastroenterol Motil. 2017;29:e13104.

    Google Scholar 

  68. Lottrup C, McMahon BP, Ejstrud P, et al. Esophagogastric junction distensibility in hiatus hernia. Dis Esophagus. 2016;29:463–471.

    CAS  PubMed  Google Scholar 

  69. Tucker E, Sweis R, Anggiansah A, et al. Measurement of esophago-gastric junction cross-sectional area and distensibility by an endolumenal functional lumen imaging probe for the diagnosis of gastro-esophageal reflux disease. Neurogastroenterol Motil. 2013;25:904–910.

    CAS  PubMed  Google Scholar 

  70. Carlson DA, Kathpalia P, Craft J, et al. The relationship between esophageal acid exposure and the esophageal response to volumetric distention. Neurogastroenterol Motil. 2018;30:e13240.

    Google Scholar 

  71. DeHaan RK, Davila D, Frelich MJ, et al. Esophagogastric junction distensibility is greater following Toupet compared to Nissen fundoplication. Surg Endosc. 2017;31:193–198.

    PubMed  Google Scholar 

  72. Hoppo T, McMahon BP, Witteman BP, et al. Functional lumen imaging probe to assess geometric changes in the esophagogastric junction following endolumenal fundoplication. J Gastrointest Surg. 2011;15:1112–1120.

    PubMed  Google Scholar 

  73. Ilczyszyn A, Botha AJ. Feasibility of esophagogastric junction distensibility measurement during Nissen fundoplication. Dis Esophagus. 2014;27:637–644.

    CAS  PubMed  Google Scholar 

  74. Su B, Novak S, Callahan ZM, et al. Using impedance planimetry (EndoFLIP) in the operating room to assess gastroesophageal junction distensibility and predict patient outcomes following fundoplication. Surg Endosc. 2020;34:1761–1768.

    PubMed  Google Scholar 

  75. Kim MP, Meisenbach LM, Chan EY. Tailored fundoplication with endoluminal functional lumen imaging probe allows for successful minimally invasive hiatal hernia repair. Surg Laparosc Endosc Percutan Tech. 2018;28:178–182.

    PubMed  Google Scholar 

  76. Carlson DA, Kahrilas PJ, Ritter K, et al. Mechanisms of repetitive retrograde contractions in response to sustained esophageal distension: a study evaluating patients with postfundoplication dysphagia. Am J Physiol Gastrointest Liver Physiol. 2018;314:G334–G340.

    PubMed  Google Scholar 

  77. Ahuja NK, Agnihotri A, Lynch KL, et al. Esophageal distensibility measurement: impact on clinical management and procedure length. Dis Esophagus. 2017;30:1–8.

    CAS  PubMed  Google Scholar 

  78. Regan J, Walshe M, Rommel N, et al. A new evaluation of the upper esophageal sphincter using the functional lumen imaging probe: a preliminary report. Dis Esophagus. 2013;26:117–123.

    CAS  PubMed  Google Scholar 

  79. Regan J, Walshe M, Rommel N, et al. New measures of upper esophageal sphincter distensibility and opening patterns during swallowing in healthy subjects using EndoFLIP(R). Neurogastroenterol Motil. 2013;25:e25–e34.

    CAS  PubMed  Google Scholar 

  80. Regan J, Walshe M, Timon C, et al. EndoFLIP(R) evaluation of pharyngo-oesophageal segment tone and swallowing in a clinical population: a total laryngectomy case series. Clin Otolaryngol. 2015;40:121–129.

    CAS  PubMed  Google Scholar 

  81. Malik Z, Sankineni A, Parkman HP. Assessing pyloric sphincter pathophysiology using EndoFLIP in patients with gastroparesis. Neurogastroenterol Motil. 2015;27:524–531.

    CAS  PubMed  Google Scholar 

  82. Snape WJ, Lin MS, Agarwal N, et al. Evaluation of the pylorus with concurrent intraluminal pressure and EndoFLIP in patients with nausea and vomiting. Neurogastroenterol Motil. 2016;28:758–764.

    CAS  PubMed  Google Scholar 

  83. Gourcerol G, Tissier F, Melchior C, et al. Impaired fasting pyloric compliance in gastroparesis and the therapeutic response to pyloric dilatation. Aliment Pharmacol Ther. 2015;41:360–367.

    CAS  PubMed  Google Scholar 

  84. Desprez C, Melchior C, Wuestenberghs F, et al. Pyloric distensibility measurement predicts symptomatic response to intrapyloric botulinum toxin injection. Gastrointest Endosc. 2019;90:754–760.e1.

    PubMed  Google Scholar 

  85. Yu JX, Baker JR, Watts L, et al. Functional lumen imaging probe is useful for the quantification of gastric sleeve stenosis and prediction of response to endoscopic dilation: a pilot study. Obes Surg. 2020;30:786–789.

    PubMed  Google Scholar 

  86. Andersen IS, Gregersen H, Buntzen S, et al. New probe for the measurement of dynamic changes in the rectum. Neurogastroenterol Motil. 2004;16:99–105.

    CAS  PubMed  Google Scholar 

  87. Luft F, Fynne L, Gregersen H, et al. Functional luminal imaging probe: a new technique for dynamic evaluation of mechanical properties of the anal canal. Tech Coloproctol. 2012;16:451–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sorensen G, Liao D, Lundby L, et al. Distensibility of the anal canal in patients with idiopathic fecal incontinence: a study with the functional lumen imaging probe. Neurogastroenterol Motil. 2014;26:255–263.

    CAS  PubMed  Google Scholar 

  89. Haas S, Liao D, Gregersen H, et al. Increased yield pressure in the anal canal during sacral nerve stimulation: a pilot study with the functional lumen imaging probe. Neurogastroenterol Motil. 2017;29:e12929.

    Google Scholar 

  90. Zifan A, Sun C, Gourcerol G, et al. EndoFLIP versus high-definition manometry in the assessment of fecal incontinence: a data-driven unsupervised comparison. Neurogastroenterol Motil. 2018;30:e13462.

    PubMed  PubMed Central  Google Scholar 

  91. Gourcerol G, Granier S, Bridoux V, et al. Do EndoFLIP assessments of anal sphincter distensibility provide more information on patients with fecal incontinence than high-resolution anal manometry? Neurogastroenterol Motil. 2016;28:399–409.

    CAS  PubMed  Google Scholar 

  92. Leroi AM, Melchior C, Charpentier C, et al. The diagnostic value of the functional lumen imaging probe versus high-resolution anorectal manometry in patients with fecal incontinence. Neurogastroenterol Motil. 2018;30:e13291.

    CAS  PubMed  Google Scholar 

  93. Zifan A, Mittal RK, Kunkel DC, et al. Loop analysis of the anal sphincter complex in fecal incontinent patients using functional luminal imaging probe. Am J Physiol Gastrointest Liver Physiol. 2020;318:G66–G76.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Patel.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorsey, Y.C., Posner, S. & Patel, A. Esophageal Functional Lumen Imaging Probe (FLIP): How Can FLIP Enhance Your Clinical Practice?. Dig Dis Sci 65, 2473–2482 (2020). https://doi.org/10.1007/s10620-020-06443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06443-8

Keywords

Navigation