Skip to main content

Advertisement

Log in

Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Diet is a key regulator of microbiome structure and function across the lifespan. Microbial colonization in the first year of life has been actively researched; however, studies during childhood are sparse. Herein, the impact of dietary intake and pre- and probiotic interventions on microbiome composition of healthy infants and children from birth to adolescence is discussed. The microbiome of breastfed infants has lower microbial diversity and richness, higher Proteobacteria, and lower Bacteroidetes and Firmicutes than those formula-fed. As children consume more complex diets, associations between dietary patterns and the microbiota emerge. Like adults, the microbiota of children consuming a Western-style diet is associated with greater Bacteroidaceae and Ruminococcaceae and lower Prevotellaceae. Dietary fibers and pre- or/and probiotics have been tested to modulate the gut microbiota in early life. Human milk oligosaccharides and prebiotics added to infant formula are bifidogenic and decrease pathogens. In children, prebiotics, such as inulin, increase Bifidobacterium abundance and dietary fibers reduce fecal pH and increase alpha diversity and calcium absorption. Probiotics have been administered to the mother during pregnancy and breastfeeding or directly to the infant/child. Findings on maternal probiotic administration on bacterial taxa are inconsistent. When given directly to the infant/child, some changes in individual taxa are observed, but rarely is overall alpha or beta diversity affected. Cesarean-delivered infants appear to benefit to a greater degree than those born vaginally. Infancy and childhood represent an opportunity to beneficially manipulate the microbiome through dietary or prebiotic interventions, which has the potential to affect both short- and long-term health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li M, Wang M, Donovan SM. Early development of the gut microbiome and immune-mediated childhood disorders. Semin Reprod Med. 2014;32:74–86.

    PubMed  Google Scholar 

  2. Wang M, Monaco MH, Donovan SM. Impact of early gut microbiota on immune and metabolic development and function. Semin Fetal Neonatal Med. 2016;21:380–387.

    PubMed  Google Scholar 

  3. Milani C, Duranti S, Bottacini F, Casey E, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81:pii: e00036-17. https://doi.org/10.1128/mmbr.00036-17.

    Article  Google Scholar 

  4. Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes. 2017;8:143–171.

    PubMed  PubMed Central  Google Scholar 

  5. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Derrien M, Alvarez A-S, deVos WM. The gut microbiota in the first decade of life. Trends Microbiol. 2019;27:997–1010.

    CAS  PubMed  Google Scholar 

  7. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9:4169. https://doi.org/10.1038/s41467-018-06473-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savage JH, Lee-Sarwar KA, Sordillo JE, et al. Diet during pregnancy and infancy and the infant intestinal microbiome. J Pediatr. 2018;203:47–54. https://doi.org/10.1016/j.jpeds.2018.07.066.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Forbes JD, Azad MB, Vehling L, et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 2018;172:e181161.

    PubMed  PubMed Central  Google Scholar 

  11. Stearns JC, Zulyniak MA, de Souza RJ, et al. Ethnic and diet-related differences in the healthy infant microbiome. Genome Med. 2017;9:32. https://doi.org/10.1186/s13073-017-0421-5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fallani M, Young D, Scott J. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr. 2010;51:77–84.

    PubMed  Google Scholar 

  13. Yang R, Gao R, Cui S, et al. Dynamic signatures of gut microbiota and influences of delivery and feeding modes during the first 6 months of life. Physiol Genomics. 2019;51:368–378.

    CAS  PubMed  Google Scholar 

  14. Donovan SM, Comstock SS. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann Nutr Metab. 2016;69:42–51.

    PubMed  Google Scholar 

  15. Moossavi S, Sepehri S, Robertson B. Composition and variation of the human milk microbiota are influenced by maternal and early life factors. Cell Host Microbe. 2019;25:324–335.

    CAS  PubMed  Google Scholar 

  16. Williams JE, Carrothers JM, Lackey KA, et al. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother–infant dyads during the first six months postpartum. J Nutr. 2019;149:902–914.

    PubMed  PubMed Central  Google Scholar 

  17. Hunt KM, Foster JA, Forney LJ. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6:e21313. https://doi.org/10.1371/journal.pone.0021313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pacheco AR, Barile D, Underwood MA, Mills DA. The impact of the milk glycobiome on the neonate gut microbiota. Annu Rev Anim Biosci. 2015;3:419–445.

    CAS  PubMed  Google Scholar 

  19. Sitarik AR, Bobbitt KR, Havstad SL, Fujimura KE, Levin AM, Zoratti EM. Breast milk TGFB is associated with neonatal gut microbial composition. J Pediatr Gastroenterol Nutr. 2017;65:e60–e67. https://doi.org/10.1097/MPG.0000000000001585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duranti S, Lugli GA, Mancabelli L. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. https://doi.org/10.1111/1462-2920.14705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boix-Amoros A, Puente-Sanchez F, du Toit E. Mycobiome profiles in breast milk from healthy women depend on mode of delivery, geographic location, and interaction with bacteria. Appl Environ Microbiol. 2019;85:pii: e02994-18. https://doi.org/10.1128/aem.02994-18.

    Article  CAS  Google Scholar 

  22. Koenig JE, Spor A, Scalfone N. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108:4578–4585.

    CAS  PubMed  Google Scholar 

  23. Vallès Y, Artacho A, Pascual-García A. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of spanish infants. PLoS Genet. 2014;10:e1004406. https://doi.org/10.1371/journal.pgen.1004406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laursen MF, Bahl MF, Michaelsen KF, Licht TR. First foods and gut microbes. Front Microbiol. 2017;8:356. https://doi.org/10.3389/fmicb.2017.00356.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thompson AL, Monteagudo-Mera A, Cadenas MB, Lampl ML, Azcarate-Peril MA. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol. 2015;5:3. https://doi.org/10.3389/fcimb.2015.00003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergstrom A, Skov TH, Bahl MI. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80:2889–2900.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:852. https://doi.org/10.1016/j.chom.2015.05.012.

    Article  CAS  PubMed  Google Scholar 

  28. Ringel-Kulka T, Cheng J, Ringel Y, et al. Intestinal microbiota in healthy U.S. young children and adults—a high throughput microarray analysis. PLoS ONE. 2013;8:e64315. https://doi.org/10.1371/journal.pone.0064315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–14696.

    PubMed  PubMed Central  Google Scholar 

  30. Smith-Brown P, Morrison M, Krause L, Davies PSW. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children. Sci Rep. 2016;6:32385. https://doi.org/10.1038/srep32385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berding K, Holscher HD, Arthur AE, Donovan SM. Fecal microbiome composition and stability in 4- to 8-year old children is associated with dietary patterns and nutrient intake. J Nutr Biochem. 2018;56:165–174.

    CAS  PubMed  Google Scholar 

  32. Nakayama J, Yamamoto A, Palermo-Conde LA. Impact of Westernized diet on gut microbiota in children on Leyte Island. Front Microbiol. 2017;. https://doi.org/10.3389/fmicb.2017.00197.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kisuse J, La-Ongkham O, Nakphaichit M, et al. Urban diets linked to gut microbiome and metabolome alterations in children: a comparative cross-sectional study in Thailand. Front Microbiol. 2018;. https://doi.org/10.3389/fmicb.2018.01345.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhong H, Penders J, Shi Z. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7:2. https://doi.org/10.1186/s40168-018-0608-z.

    Article  PubMed  PubMed Central  Google Scholar 

  35. La-Ongkham O, Nakphaichit M, Leelavatcharamas V, Keawsompong S, Nitisinprasert S. Distinct gut microbiota of healthy children from two different geographic regions of Thailand. Arch Microbiol. 2015;197:561–573.

    CAS  PubMed  Google Scholar 

  36. Khine WWT, Zhang Y, Goie GJY, et al. Gut microbiome of pre-adolescent children of two ethnicities residing in three distant cities. Sci Rep. 2019;9:7831. https://doi.org/10.1038/s41598-019-44369-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin A, Bik EM, Costello EK, et al. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States. PLoS ONE. 2013;8:e53838. https://doi.org/10.1371/journal.pone.0053838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shankar V, Gouda M, Moncivaiz J, et al. Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. MSystems. 2017;2:pii: e00169-16. https://doi.org/10.1128/msystems.00169-16.

    Article  Google Scholar 

  39. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hollister EB, Riehle K, Luna RA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36. https://doi.org/10.1186/s40168-015-0101-x.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Slavin JL. Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc. 2008;108:1716–1731.

    PubMed  Google Scholar 

  42. Mobley AR, Jones JM, Rodriguez J, Slavin J, Zelman KM. Identifying practical solutions to meet America’s fiber needs: proceedings from the Food & Fiber Summit. Nutrients. 2014;6:2540–2551.

    PubMed  PubMed Central  Google Scholar 

  43. Verspreet J, Damen B, Broekaert WF, Verbeke K, Delcour JA, Courtin CM. A critical look at prebiotics within the dietary fiber concept. Annu Rev Food Sci Technol. 2016;7:167–190.

    CAS  PubMed  Google Scholar 

  44. Korczak R, Kamil A, Fleige L, Donovan SM, Slavin JL. Dietary fiber and digestive health in children. Nutr Rev. 2017;75:241–259.

    PubMed  Google Scholar 

  45. Codex Alimentarius Committee. Guidelines on Nutrition Labelling CAC/GL 2-1985 as Last Amended 2010. Joint FAO/WHO Food Standards Programme, Secretariat of the Codex Alimentarius Commission. Rome: FAO; 2010.

    Google Scholar 

  46. Jones JM. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutr J. 2014;13:34.

    PubMed  PubMed Central  Google Scholar 

  47. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8:172–184.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14:491–502.

    PubMed  Google Scholar 

  49. Puccio G, Alliet P, Cajozzo C, et al. Effects of infant formula with human milk oligosaccharides on growth and morbidity: a randomized multicenter trial. J Pediatr Gastroenterol Nutr. 2017;64:624–631.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Reverri EJ, Devitt AA, Kajzer JA, Baggs GE, Borschel MW. Review of the clinical experiences of feeding infants formula containing the human milk oligosaccharide 2′-fucosyllactose. Nutrients. 2018;10:pii: E1346. https://doi.org/10.3390/nu10101346.

    Article  CAS  Google Scholar 

  51. Vandenplas Y, Berger B, Carnielli VP, et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients. 2018;10:pii: E1161. https://doi.org/10.3390/nu10091161.

    Article  CAS  Google Scholar 

  52. Lohner S, Jakobik V, Mihályi K, et al. Inulin-type fructan supplementation of 3- to 6-year-old children is associated with higher fecal Bifidobacterium concentrations and fewer febrile episodes requiring medical attention. J Nutr. 2018;148:1300–1308.

    PubMed  PubMed Central  Google Scholar 

  53. François IE, Lescroart O, Veraverbeke WS, et al. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr. 2014;58:647–653.

    PubMed  Google Scholar 

  54. Whisner CM, Martin BR, Nakatsu CH, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146:1298–1306.

    CAS  PubMed  Google Scholar 

  55. Whisner CM, Martin BR, Schoterman MH, et al. Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial. Br J Nutr. 2013;110:1292–1303.

    CAS  PubMed  Google Scholar 

  56. Whisner CM, Martin BR, Nakatsu CH, et al. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: a randomised controlled trial using dual stable isotopic tracers. Br J Nutr. 2014;112:446–456.

    CAS  PubMed  Google Scholar 

  57. Hill C, Guarner F, Reid G, et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–514.

    PubMed  Google Scholar 

  58. Cuello-Garcia C, Brozek JL, Fiocchi A, et al. Probiotics for the prevention of allergies: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol. 2015;36:952–961.

    Google Scholar 

  59. Szajewska H. What are the indications for using probiotics in children? Arch Dis Child. 2016;101:398–403.

    PubMed  Google Scholar 

  60. Szajewska H. Short- and long-term effects of probiotics administered early in life. Nestle Nutr Workshop Ser Pediatr Program. 2011;68:65–78.

    PubMed  Google Scholar 

  61. Sansotta N, Peroni DG, Romano S, et al. The good bugs: the use of probiotics in pediatrics. Curr Opin Pediatr. 2019;31:661–669.

    PubMed  Google Scholar 

  62. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25:716–729.

    CAS  PubMed  Google Scholar 

  63. Lahtinen SJ, Boyle RJ, Kivivuori S, et al. Prenatal probiotic administration can influence Bifidobacterium microbiota development in infants at high risk of allergy. J Allergy Clin Immunol. 2009;123:499–501.

    PubMed  Google Scholar 

  64. Rinne M, Kalliomaki M, Arvilommi H, Salminen S, Isolauri E. Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J Pediatr. 2005;147:186–191.

    PubMed  Google Scholar 

  65. Rutten NB, Gorissen DM, Eck A, et al. Long term development of gut microbiota composition in atopic children: impact of probiotics. PLoS ONE. 2015;10:e0137681. https://doi.org/10.1371/journal.pone.0137681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Enomoto T, Sowa M, Nishimori K, et al. Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergol Int. 2014;63:575–585.

    CAS  PubMed  Google Scholar 

  67. Dotterud CK, Avershina E, Sekelja M, et al. Does maternal perinatal probiotic supplementation alter the intestinal microbiota of mother and child? J Pediatr Gastroenterol Nutr. 2015;61:200–207.

    CAS  PubMed  Google Scholar 

  68. Grześkowiak Ł, Grönlund MM, Beckmann C, Salminen S, von Berg A, Isolauri E. The impact of perinatal probiotic intervention on gut microbiota: double-blind placebo-controlled trials in Finland and Germany. Anaerobe. 2012;18:7–13.

    PubMed  Google Scholar 

  69. Rinne M, Kalliomäki M, Salminen S, Isolauri E. Probiotic intervention in the first months of life: short-term effects on gastrointestinal symptoms and long-term effects on gut microbiota. J Pediatr Gastroenterol Nutr. 2006;43:200–205.

    PubMed  Google Scholar 

  70. Murphy R, Morgan XC, Wang XY, et al. Eczema-protective probiotic alters infant gut microbiome functional capacity but not composition: sub-sample analysis from a RCT. Benef Microbes. 2019;10:5–17.

    CAS  PubMed  Google Scholar 

  71. Bazanella M, Maier TV, Clavel T, et al. Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr. 2017;106:1274–1286.

    CAS  PubMed  Google Scholar 

  72. Vendt N, Grünberg H, Tuure T, et al. Growth during the first 6 months of life in infants using formula enriched with Lactobacillus rhamnosus GG: double-blind, randomized trial. J Hum Nutr Diet. 2006;19:51–58.

    CAS  PubMed  Google Scholar 

  73. Garcia Rodenas CL, Lepage M, Ngom-Bru C, Fotiou A, Papagaroufalis K, Berger B. Effect of formula containing Lactobacillus reuteri DSM 17938 on fecal microbiota of infants born by cesarean-section. J Pediatr Gastroenterol Nutr. 2016;63:681–687.

    PubMed  Google Scholar 

  74. Wu BB, Yang Y, Xu X, Wang WP. Effects of Bifidobacterium supplementation on intestinal microbiota composition and the immune response in healthy infants. World J Pediatr. 2016;12:177–182.

    CAS  PubMed  Google Scholar 

  75. Maldonado-Lobón JA, Gil-Campos M, Maldonado J, et al. Long-term safety of early consumption of Lactobacillus fermentum CECT5716: a 3-year follow-up of a randomized controlled trial. Pharmacol Res. 2015;95–96:12–19.

    PubMed  Google Scholar 

  76. Brunser O, Figueroa G, Gotteland M, et al. Effects of probiotic or prebiotic supplemented milk formulas on fecal microbiota composition of infants. Asia Pac J Clin Nutr. 2006;15:368–376.

    CAS  PubMed  Google Scholar 

  77. Laursen MF, Laursen RP, Larnkjær A, Michaelsen KF, Bahl MI, Licht TR. Administration of two probiotic strains during early childhood does not affect the endogenous gut microbiota composition despite probiotic proliferation. BMC Microbiol. 2017;17:175. https://doi.org/10.1186/s12866-017-1090-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Marzotto M, Maffeis C, Paternoster T, et al. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Res Microbiol. 2006;157:857–866.

    CAS  PubMed  Google Scholar 

  79. Tan TP, Ba Z, Sanders ME, et al. Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12 supplemented yogurt in healthy children. J Pediatr Gastroenterol Nutr. 2017;64:302–309.

    PubMed  PubMed Central  Google Scholar 

  80. Lau AS, Yanagisawa N, Hor YY, et al. Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Benef Microbes. 2018;9:61–70.

    CAS  PubMed  Google Scholar 

  81. Korpela K, Salonen A, Virta LJ, Kumpu M, Kekkonen RA, de Vos WM. Lactobacillus rhamnosus GG intake modifies preschool children’s intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use. PLoS ONE. 2016;11:e0154012. https://doi.org/10.1371/journal.pone.0154012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mogna L, Del Piano M, Mogna G. Capability of the two microorganisms Bifidobacterium breve B632 and Bifidobacterium breve BR03 to colonize the intestinal microbiota of children. J Clin Gastroenterol. 2014;48:S37–S39.

    PubMed  Google Scholar 

  83. Wang C, Nagata S, Asahara T, et al. Intestinal microbiota profiles of healthy pre-school and school-age children and effects of probiotic supplementation. Ann Nutr Metab. 2015;67:257–266.

    CAS  PubMed  Google Scholar 

  84. El Manouni El Hassani S, de Boer NKH, et al. Effect of daily intake of Lactobacillus casei on microbial diversity and dynamics in a healthy pediatric population. Curr Microbiol. 2019;76:1020–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald FG. Intestinal microbiota, diet and health. Br J Nutr. 2014;111:3870403.

    Google Scholar 

  86. Chapkin RS, Zhao C, Ivanov I, et al. Non-invasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;298:G582–G589.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schwartz S, Friedberg I, Ivanov I, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in developmental and immune responses. Genome Biol. 2012;13:R32. https://doi.org/10.1186/gb-2012-13-4-r32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chilloux J, Neves AL, Boulangé CL, Dumas M-E. The microbial-mammalian metabolic axis: a critical symbiotic relationship. Curr Opin Clin Nutr Metab Care. 2016;19:250–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang N, Ju Z, Zuo T. Time for food: the impact of diet on gut microbiota and human health. Nutrition. 2018;52–52:800–885.

    Google Scholar 

  90. Barratt MJ, Lebrilla C, Shapiro H-Y, Gordon JI. The gut microbiota, food science and human nutrition; a timely marriage. Cell Host Microbe. 2017;22:134–141.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by NIH R01 DK107561 [SMD].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon M. Donovan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, E.C., Dinsmoor, A.M., Wang, M. et al. Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Dig Dis Sci 65, 706–722 (2020). https://doi.org/10.1007/s10620-020-06092-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06092-x

Keywords

Navigation