Skip to main content

Advertisement

Log in

Overexpression of the SMYD3 Promotes Proliferation, Migration, and Invasion of Pancreatic Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The Suvar, Enhancer of zeste, and Trithorax (SET), myeloid-Nervy-DEAF-1 (MYND) domain-containing protein 3 (SMYD3), was reported to be upregulated in various tumors. However, its role in pancreatic cancer progression remains unclear.

Aims

To explore the role of SMYD3 in the pancreatic cancer.

Methods

The expressions of SMYD3, caspase-3, and matrix metallopeptidase-2 (MMP-2) were detected in pancreatic cancer and non-tumor tissues by immunohistochemistry. The CCK-8 and transwell assays were performed to test proliferation, migration, and invasion ability in short hairpin RNA (shRNA-SMYD3) pancreatic cancer cell line SW1190. RT-PCR and Western blot were used to detect the expressions of SMYD3, caspase-3, and MMP-2 in SW1990 cell line and shRNA-SMYD3 SW1990 cell line.

Results

The expressions of SMYD3, caspase-3, and MMP-2 were upregulated in pancreatic cancer. The SMYD3 was positively associated with caspase-3 and MMP-2 expressions in pancreatic cancer tissues. SMYD3, TNM stages, histological differentiation, and lymph node metastasis were identified as an independent prognostic factor. Moreover, interfered SMYD3 expression in SW1990 cell line significantly reduced the cell proliferation, migration, and invasion. RT-PCR and Western blot showed the expression of MMP-2 decreased in shRNA-SMYD3 SW1990 cell line, but no significant change was observed in the caspase-3 expression.

Conclusions

The overexpression of SMYD3 promoted proliferation, migration, and invasion of pancreatic cancer, and SMYD3 may affect the pancreatic cancer progression by regulating MMP-2 rather than caspase-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132.

    Article  PubMed  Google Scholar 

  3. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet. 2004;363:1049–1057.

    Article  CAS  PubMed  Google Scholar 

  4. Cameron JL, He J. Two thousand consecutive pancreaticoduodenectomies. J Am Coll Surg. 2015;220:530–536.

    Article  PubMed  Google Scholar 

  5. Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Imai H, Minami N. Histone methyltransferase Smyd3 regulates early embryonic lineage commitment in mice. Reproduction. 2015;150:21–30.

    Article  CAS  PubMed  Google Scholar 

  6. Fujii T, Tsunesumi S, Yamaguchi K, Watanabe S, Furukawa Y. Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One. 2011;6:e23491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang L, Xu AM. SET and MYND domain containing protein 3 in cancer. Am J Transl Res. 2017;9:1–14.

    PubMed  PubMed Central  Google Scholar 

  8. Fei X, Ma Y, Liu X, Meng Z. Overexpression of SMYD3 is predictive of unfavorable prognosis in hepatocellular carcinoma. Tohoku J Exp Med. 2017;243:219–226.

    Article  CAS  PubMed  Google Scholar 

  9. Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. Smyd3 is a transcriptional potentiator of multiple cancer-promoting genes and required for liver and colon cancer development. Cancer Cell. 2016;29:354–366.

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Liu Y, Kong F, et al. Elevated levels of SET and MYND domain-containing protein 3 are correlated with overexpression of transforming growth factor-β1 in gastric cancer. J Am Coll Surg. 2015;221:579–590.

    Article  PubMed  Google Scholar 

  11. Tewari M, Quan LT, O’Rourke K, et al. Yama/CPP32ß, a mammalian homologue of CED-3, is a crmA-inhibitable protease that cleaves the death substrate poly ADP-ribose polymerase. Cell. 1995;81:801–809.

    Article  CAS  PubMed  Google Scholar 

  12. Huang KH, Fang WL, Li AF, et al. Caspase-3, a key apoptotic protein, as a prognostic marker in gastric cancer after curative surgery. Int J Surg. 2018;52:258–263.

    Article  PubMed  Google Scholar 

  13. Efuet ET, Ding XP, Cartwright C, Pan Y, Cohen L, Yang P. Huachansu mediates cell death in non-Hodgkin’s lymphoma by induction of caspase-3 and inhibition of MAP kinase. Int J Oncol. 2015;47:592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakagawara A, Nakamura Y, Ikeda H, et al. High levels of expression and nuclear localization of interleukin-1ß converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res. 1997;57:4578–4584.

    CAS  PubMed  Google Scholar 

  15. Satoh K, Kaneko K, Hirota M, Toyota T, Shimosegawa T. The pattern of CPP32/caspase-3 expression reflects the biological behavior of the human pancreatic duct cell tumors. Pancreas. 2000;21:352–357.

    Article  CAS  PubMed  Google Scholar 

  16. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980;284:67–68.

    Article  CAS  PubMed  Google Scholar 

  17. Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis and angiogenesis. Surg Oncol Clin N Am. 2001;10:383–392.

    Article  CAS  PubMed  Google Scholar 

  18. Durlik M, Gardian K. Metalloproteinase 2 and 9 activity in the development of pancreatic cancer. Pol Przegl Chir. 2012;84:377–382.

    Article  PubMed  Google Scholar 

  19. Liu Y, Liu H, Luo X, Deng J, Pan Y, Liang H. Overexpression of SMYD3 and matrix metalloproteinase-9 are associated with poor prognosis of patients with gastric cancer. Tumour Biol. 2015;36:4377–4386.

    Article  CAS  PubMed  Google Scholar 

  20. Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–1024.

    Article  CAS  PubMed  Google Scholar 

  21. Rajajeyabalachandran G, Kumar S, Murugesan T, et al. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin Ther Targets. 2017;21:145–157.

    Article  CAS  PubMed  Google Scholar 

  22. Giakountis A, Moulos P, Sarris ME, Hatzis P, Talianidis I. Smyd3-associated regulatory pathways in cancer. Semin Cancer Biol. 2017;42:70–80.

    Article  CAS  PubMed  Google Scholar 

  23. Paladino D, Yue P, Furuya H, Acoba J, Rosser CJ, Turkson J. A novel nuclear Src and p300 signaling axis controls migratory and invasive behavior in pancreatic cancer. Oncotarget. 2016;7:7253–7267.

    Article  PubMed  Google Scholar 

  24. Chen H, Yang X, Feng Z, et al. Prognostic value of Caspase-3 expression in cancers of digestive tract: a meta-analysis and systematic review. Int J Clin Exp Med. 2015;8:10225–10234.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang HL, Zhou PY, Zhang Y, Liu P. Relationships between abnormal MMP2 expression and prognosis in gastric cancer: a meta-analysis of cohort studies. Cancer Biother Radiopharm. 2014;29:166–172.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang K, Chen X, Zhou J, et al. Association between MMP2-1306 C/T polymorphism and prostate cancer susceptibility: a meta-analysis based on 3906 subjects. Oncotarget. 2017;8:45020–45029.

    PubMed  PubMed Central  Google Scholar 

  27. Ren TN, Wang JS, He YM, Xu CL, Wang SZ, Xi T. Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells. Med Oncol. 2011;28:S91–S98.

    Article  PubMed  Google Scholar 

  28. Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6:731–740.

    Article  CAS  PubMed  Google Scholar 

  29. Guil S, Soler M, Portela A, et al. Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol. 2012;19:664–670.

    Article  CAS  PubMed  Google Scholar 

  30. Brown MA, Foreman K, Harriss J, et al. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget. 2015;6:4005–4019.

    PubMed  PubMed Central  Google Scholar 

  31. Chandramouli B, Silvestri V, Scarno M, Ottini L, Chillemi G. Smyd3 open & closed lock mechanism for substrate recruitment: the hinge motion of C-terminal domain inferred from μ-second molecular dynamics simulations. Biochim Biophys Acta. 2016;1860:1466–1474.

    Article  CAS  PubMed  Google Scholar 

  32. Kim JM, Kim K, Schmidt T, et al. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 2015;43:8868–8883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen M, Gan X, Yoshino K, et al. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol Immunol. 2016;60:407–417.

    Article  CAS  PubMed  Google Scholar 

  34. Cock-Rada AM, Medjkane S, Janski N, et al. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res. 2012;72:810–820.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from Anhui science and technology Project (1804h08020277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Huang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Cl., Huang, Q. Overexpression of the SMYD3 Promotes Proliferation, Migration, and Invasion of Pancreatic Cancer. Dig Dis Sci 65, 489–499 (2020). https://doi.org/10.1007/s10620-019-05797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05797-y

Keywords

Navigation