Skip to main content

Advertisement

Log in

Comprehensive Analysis of the Canonical and Non-canonical Wnt Signaling Pathways in Gastric Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Previous studies showed that dysregulation of Wnt signaling by gene mutation and abnormal gene expression is one of the causative factors for gastric cancer (GC). So far, a systematic and comprehensive analysis of gene mutation, gene expression, and DNA methylation profiles of the Wnt pathway associated with gastric carcinogenesis, however, has not yet been reported.

Aims

To this end, we investigated all the above-mentioned genetic alterations associated with the canonical and non-canonical Wnt pathways in GC tumors, in order to understand the molecular mechanism underlying gastric carcinogenesis.

Methods

The information on gene mutations and expression was obtained from data resources, such as TCGA, GSEA, and TCGA-STAD, and was analyzed with the cBioPortal platform. We also performed in vitro analysis on DDK2 gene, a Wnt inhibitor, to characterize its role in GC tumor cells.

Results

We found that gene mutations of 43 Wnt genes and abnormal expression of 13 Wnt genes occurred at a high frequency in GC tumors, and gene amplification and deletion are the major mutation types. Clusters of DNA methylation associated with Wnt signaling genes and GC tumors were also revealed, and a significant increase in β-catenin activity was found in the hypermethylated group of GC tumors. In addition, overexpression of DKK2 gene significantly inhibited multiple biological processes of the GC cells, including their growth, clonal forming, migration, and invasion ability, and induced apoptosis of the GC cells.

Conclusions

Our current study suggested that gene mutation, abnormal gene expression, and altered DNA methylation profiles associated with the Wnt signaling may play an important role in gastric carcinogenesis, and DKK2 gene may act as a tumor suppressor in gastric cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132.

    Article  PubMed  Google Scholar 

  2. Suh YS, Yang HK. Screening and early detection of gastric cancer: east versus west. Surg Clin N Am. 2015;95:1053–1066.

    Article  PubMed  Google Scholar 

  3. Kanda M, Oya H, Nomoto S, et al. Diversity of clinical implication of B-cell translocation gene 1 expression by histopathologic and anatomic subtypes of gastric cancer. Dig Dis Sci. 2015;60:1256–1264. https://doi.org/10.1007/s10620-014-3477-8.

    Article  CAS  PubMed  Google Scholar 

  4. Huang GL, Luo Q, Rui G, et al. Oncogenic activity of retinoic acid receptor gamma is exhibited through activation of the Akt/NF-kappaB and Wnt/beta-catenin pathways in cholangiocarcinoma. Mol Cell Biol. 2013;33:3416–3425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hiyama T, Haruma K, Kitadai Y, et al. K-ras mutation in helicobacter pylori-associated chronic gastritis in patients with and without gastric cancer. Int J Cancer. 2002;97:562–566.

    Article  CAS  PubMed  Google Scholar 

  6. Chiurillo MA. Role of the Wnt/beta-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med. 2015;5:84–102.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–582.

    Article  CAS  PubMed  Google Scholar 

  8. Radulescu S, Ridgway RA, Cordero J, et al. Acute WNT signalling activation perturbs differentiation within the adult stomach and rapidly leads to tumour formation. Oncogene. 2013;32:2048–2057.

    Article  CAS  PubMed  Google Scholar 

  9. Yamaguchi T, Yanagisawa K, Sugiyama R, et al. NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell. 2012;21:348–361.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Chen L, Cui B, et al. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS ONE. 2012;7:e31127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–1473.

    Article  CAS  PubMed  Google Scholar 

  12. Papkoff J, Brown AM, Varmus HE. The int-1 proto-oncogene products are glycoproteins that appear to enter the secretory pathway. Mol Cell Biol. 1987;7:3978–3984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–1512.

    Article  CAS  PubMed  Google Scholar 

  14. Shtutman M, Zhurinsky J, Simcha I, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 1999;96:5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC. Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Investig. 2000;106:533–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kolligs FT, Nieman MT, Winer I, et al. ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. Cancer Cell. 2002;1:145–155.

    Article  CAS  PubMed  Google Scholar 

  17. Sasai N, Nakazawa Y, Haraguchi T, Sasai Y. The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements. Nat Cell Biol. 2004;6:741–748.

    Article  CAS  PubMed  Google Scholar 

  18. Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell. 2004;119:97–108.

    Article  CAS  PubMed  Google Scholar 

  19. Lu X, Borchers AG, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature. 2004;430:93–98.

    Article  CAS  PubMed  Google Scholar 

  20. Nishita M, Yoo SK, Nomachi A, et al. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol. 2006;175:555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marlow F, Topczewski J, Sepich D, Solnica-Krezel L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol. 2002;12:876–884.

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Yuan H, Xie W, et al. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem. 1999;274:129–134.

    Article  CAS  PubMed  Google Scholar 

  23. Sheldahl LC, Slusarski DC, Pandur P, Miller JR, Kuhl M, Moon RT. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell Biol. 2003;161:769–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuhl M, Sheldahl LC, Malbon CC, Moon RT. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem. 2000;275:12701–12711.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu J, Zhang S, Gu L, Di W. Epigenetic silencing of DKK2 and Wnt signal pathway components in human ovarian carcinoma. Carcinogenesis. 2012;33:2334–2343.

    Article  CAS  PubMed  Google Scholar 

  26. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001;114:4359–4369.

    CAS  PubMed  Google Scholar 

  28. Silva AL, Dawson SN, Arends MJ, et al. Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer. 2014;14:891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–209. https://doi.org/10.1038/nature13480.

    Article  CAS  Google Scholar 

  30. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141–149.

    Article  PubMed  Google Scholar 

  32. Wang H, Duan XL, Qi XL, et al. Concurrent hypermethylation of SFRP2 and DKK2 activates the Wnt/beta-catenin pathway and is associated with poor prognosis in patients with gastric cancer. Mol Cells. 2017;40:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ooi CH, Ivanova T, Wu J, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5:e1000676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoda Y, Takeshima H, Niwa T, et al. Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer. 2015;18:65–76.

    Article  CAS  PubMed  Google Scholar 

  35. Ji J, Feng X, Shi M, et al. Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. Int J Oncol. 2015;46:1343–1353.

    Article  CAS  PubMed  Google Scholar 

  36. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene. 2003;22:7218–7221.

    Article  CAS  PubMed  Google Scholar 

  37. Shan YS, Hsu HP, Lai MD, et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett. 2017;14:4517–4526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sato H, Suzuki H, Toyota M, et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis. 2007;28:2459–2466.

    Article  CAS  PubMed  Google Scholar 

  39. Nojima M, Suzuki H, Toyota M, et al. Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene. 2007;26:4699–4713.

    Article  CAS  PubMed  Google Scholar 

  40. Guo Y, Guo W, Chen Z, Kuang G, Yang Z, Dong Z. Hypermethylation and aberrant expression of Wnt-antagonist family genes in gastric cardia adenocarcinoma. Neoplasma. 2011;58:110–117.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Z, Liu W, Liu J, Wang J, Luo B. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. J Med Virol. 2017;89:1844–1851.

    Article  CAS  PubMed  Google Scholar 

  42. Deng J, Liang H, Zhang R, et al. Methylated CpG site count of dapper homolog 1 (DACT1) promoter prediction the poor survival of gastric cancer. Am J Cancer Res. 2014;4:518–527.

    PubMed  PubMed Central  Google Scholar 

  43. Yu Y, Yan W, Liu X, et al. DACT2 is frequently methylated in human gastric cancer and methylation of DACT2 activated Wnt signaling. Am J Cancer Res. 2014;4:710–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee HK, Chaboub LS, Zhu W, et al. Daam2-PIP5K is a regulatory pathway for Wnt signaling and therapeutic target for remyelination in the CNS. Neuron. 2015;85:1227–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez N, Yang J, Hasselblatt K, et al. Casein kinase I epsilon interacts with mitochondrial proteins for the growth and survival of human ovarian cancer cells. EMBO Mol Med. 2012;4:952–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17:45–51.

    Article  CAS  PubMed  Google Scholar 

  47. Peters JM, McKay RM, McKay JP, Graff JM. Casein kinase I transduces Wnt signals. Nature. 1999;401:345–350.

    Article  CAS  PubMed  Google Scholar 

  48. Surana R, Sikka S, Cai W, et al. Secreted frizzled related proteins: implications in cancers. Biochim Biophys Acta. 2014;1845:53–65.

    CAS  PubMed  Google Scholar 

  49. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25:7469–7481.

    Article  CAS  PubMed  Google Scholar 

  50. Maehata T, Taniguchi H, Yamamoto H, et al. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer. World J Gastroenterol. 2008;14:2702–2714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81760441).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Penggao Dai or Jianping Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 279 kb)

Supplementary material 2 (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, H., Duan, X. et al. Comprehensive Analysis of the Canonical and Non-canonical Wnt Signaling Pathways in Gastric Cancer. Dig Dis Sci 64, 2830–2842 (2019). https://doi.org/10.1007/s10620-019-05606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05606-6

Keywords

Navigation