Skip to main content

Advertisement

Log in

Adipose-Derived Stem Cells Ameliorate Experimental Murine Colitis via TSP-1-Dependent Activation of Latent TGF-β

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Adipose tissue-derived stem cells (ASCs) have been investigated as therapeutic tools for a variety of autoimmune diseases, including inflammatory diseases. However, the mechanisms underlying the immunomodulatory properties of ASCs are not well understood. Here, we investigated the mechanism of regulatory T cell (Treg) induction in ASC therapy in a murine model of inflammatory bowel disease.

Methods

Acute colitis was induced in mice using dextran sulfate sodium and ASCs administered intraperitoneally. Tregs and CD103+ dendritic cells were analyzed in the mesenteric lymph nodes (MLNs), spleen, and colonic lamina propria (CLP). Activation of latent TGF-β by ASCs was analyzed in vitro using ELISA. siRNA technology was used to create ASCs in which TSP-1 or integrinαv was knocked down in order to investigate the involvement of these proteins in the activation of latent TGF-β. In addition, TSP-1-knockdown ASCs were administered to mice with colitis to assess their clinical efficacy in vivo.

Results

Systemic administration of ASCs significantly lessened the clinical and histopathological severity of colitis. ASCs were distributed throughout the lymphatic system in the MLNs and spleen. Tregs were increased in the MLNs and CLP, but CD103+ dendritic cells were not significantly altered. The ASCs activated latent TGF-β. TSP-1 knockdown impaired TGF-β activation in vitro and abrogated the therapeutic effects of the ASCs in vivo. Furthermore, Tregs were not increased in the MLNs and CLP from mice treated with TSP-1-knockdown ASCs.

Conclusions

These results demonstrate that ASCs induce Tregs by activating latent TGF-β via TSP-1, independent of CD103+ dendritic cell induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–2213.

    Article  Google Scholar 

  2. Nakao N, Nakayama T, Yahata T, et al. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells. Am J Pathol. 2010;177:547–554.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell. 2012;10:544–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–1441.

    Article  PubMed  Google Scholar 

  5. Polchert D, Sobinsky J, Douglas G, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38:1745–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun L, Akiyama K, Zhang H, et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells. 2009;27:1421–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Augello A, Tasso R, Negrini SM, et al. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56:1175–1186.

    Article  CAS  PubMed  Google Scholar 

  8. Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755–1761.

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Rey E, Anderson P, Gonzalez MA, et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–939.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez MA, Gonzalez-Rey E, Rico L, et al. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978–989.

    Article  CAS  PubMed  Google Scholar 

  11. Parekkadan B, Tilles AW, Yarmush ML. Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells. Stem Cells. 2008;26:1913–1919.

    Article  PubMed  Google Scholar 

  12. Chen S, Liu Z, Tian N, et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol. 2006;18:552–556.

    PubMed  Google Scholar 

  13. Liang J, Zhang H, Hua B, et al. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler. 2009;15:644–646.

    Article  CAS  PubMed  Google Scholar 

  14. Mizushima T, Takahashi H, Takeyama H, et al. A clinical trial of autologous adipose-derived regenerative cell transplantation for a postoperative enterocutaneous fistula. Surg Today. 2016;46:835–842.

    Article  CAS  PubMed  Google Scholar 

  15. Batten P, Sarathchandra P, Antoniw JW, et al. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng. 2006;12:2263–2273.

    Article  CAS  PubMed  Google Scholar 

  16. Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–4621.

    Article  CAS  PubMed  Google Scholar 

  17. Groh ME, Maitra B, Szekely E, et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol. 2005;33:928–934.

    Article  CAS  PubMed  Google Scholar 

  18. Park MJ, Park HS, Cho ML, et al. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum. 2011;63:1668–1680.

    Article  CAS  PubMed  Google Scholar 

  19. Ohmura Y, Tanemura M, Kawaguchi N, et al. Combined transplantation of pancreatic islets and adipose tissue-derived stem cells enhances the survival and insulin function of islet grafts in diabetic mice. Transplantation. 2010;90:1366–1373.

    Article  CAS  PubMed  Google Scholar 

  20. Williams KL, Fuller CR, Dieleman LA, et al. Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone. Gastroenterology. 2001;120:925–937.

    Article  CAS  PubMed  Google Scholar 

  21. Okabe M, Ikawa M, Kominami K, et al. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 1997;407:313–319.

    Article  CAS  PubMed  Google Scholar 

  22. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–341.

    Article  CAS  PubMed  Google Scholar 

  23. Miyoshi N, Ishii H, Mimori K, et al. Abnormal expression of TRIB3 in colorectal cancer: a novel marker for prognosis. Br J Cancer. 2009;101:1664–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto H, Kondo M, Nakamori S, et al. JTE-522, a cyclooxygenase-2 inhibitor, is an effective chemopreventive agent against rat experimental liver fibrosis1. Gastroenterology. 2003;125:556–571.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta GP, Nguyen DX, Chiang AC, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007;446:765–770.

    Article  CAS  PubMed  Google Scholar 

  26. Parekkadan B, Upadhyay R, Dunham J, et al. Bone marrow stromal cell transplants prevent experimental enterocolitis and require host CD11b + splenocytes. Gastroenterology. 2011;140:966–975.

    Article  CAS  PubMed  Google Scholar 

  27. Worthington JJ, Czajkowska BI, Melton AC, et al. Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3 + regulatory T cells via integrin alphavbeta8. Gastroenterology. 2011;141:1802–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paidassi H, Acharya M, Zhang A, et al. Preferential expression of integrin alphavbeta8 promotes generation of regulatory T cells by mouse CD103 + dendritic cells. Gastroenterology. 2011;141:1813–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4 + CD25- naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci. 2003;116:217–224.

    Article  CAS  PubMed  Google Scholar 

  32. Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–1517.

    Article  PubMed  Google Scholar 

  33. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–1164.

    CAS  PubMed  Google Scholar 

  34. Bacchetta R, Passerini L, Gambineri E, et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J Clin Invest. 2006;116:1713–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McMurchy AN, Di Nunzio S, Roncarolo MG, et al. Molecular regulation of cellular immunity by FOXP3. Adv Exp Med Biol. 2009;665:30–46.

    Article  CAS  PubMed  Google Scholar 

  36. Kimura H, Takahashi K, Futami K, et al. Has widespread use of biologic and immunosuppressant therapy for ulcerative colitis affected surgical trend? Result of a questionnaire of surgical institutions in Japan. Surg Today. 2016;46:930–938.

    Article  CAS  PubMed  Google Scholar 

  37. Duijvestein M, Vos AC, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–1669.

    Article  PubMed  Google Scholar 

  38. Monk JM, Hou TY, Turk HF, et al. Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis. Plos One. 2012;7:e49739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hogg PJ, Owensby DA, Chesterman CN. Thrombospondin 1 is a tight-binding competitive inhibitor of neutrophil cathepsin G. Determination of the kinetic mechanism of inhibition and localization of cathepsin G binding to the thrombospondin 1 type 3 repeats. J Biol Chem. 1993;268:21811–21818.

    CAS  PubMed  Google Scholar 

  40. Konig HG, Kogel D, Rami A, et al. TGF-β1 activates two distinct type I receptors in neurons: implications for neuronal NF-{kappa}B signaling. J Cell Biol. 2005;168:1077–1086.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 1996;110:975–984.

    Article  CAS  PubMed  Google Scholar 

  42. Liu W, Zhang S, Gu S, et al. Mesenchymal stem cells recruit macrophages to alleviate experimental colitis through TGFβ1. Cell Physiol Biochem. 2015;35:858–865.

    Article  CAS  PubMed  Google Scholar 

  43. Li C, Flynn RS, Grider JR, et al. Increased activation of latent TGF-β1 by αVβ3 in human Crohn’s disease and fibrosis in TNBS colitis can be prevented by cilengitide. Inflamm Bowel Dis. 2013;19:2829–2839.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–161.

    Article  CAS  PubMed  Google Scholar 

  45. Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crawford SE, Stellmach V, Murphy-Ullrich JE, et al. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998;93:1159–1170.

    Article  CAS  PubMed  Google Scholar 

  47. Huang XZ, Wu JF, Cass D, et al. Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J Cell Biol. 1996;133:921–928.

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Dee ZP, Chittur SV, Patel B, et al. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects. PLoS One. 2012;7:e34590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Travis MA, Reizis B, Melton AC, et al. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature. 2007;449:361–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Z, Mu Z, Dabovic B, et al. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol. 2007;176:787–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu K, Ge J, Summers JB, et al. TSP-1 secreted by bone marrow stromal cells contributes to retinal ganglion cell neurite outgrowth and survival. PLoS One. 2008;3:e2470.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Foster LJ, Zeemann PA, Li C, et al. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells. 2005;23:1367–1377.

    Article  CAS  PubMed  Google Scholar 

  53. Fan H, Zhao G, Liu L, et al. Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol. 2012;9:473–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duijvestein M, Wildenberg ME, Welling MM, et al. Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells. 2011;29:1549–1558.

    Article  CAS  PubMed  Google Scholar 

  55. Turley SJ, Lee JW, Dutton-Swain N, et al. Endocrine self and gut non-self intersect in the pancreatic lymph nodes. Proc Natl Acad Sci USA. 2005;102:17729–17733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castelo-Branco MT, Soares ID, Lopes DV, et al. Intraperitoneal but not intravenous cryopreserved mesenchymal stromal cells home to the inflamed colon and ameliorate experimental colitis. Plos One. 2012;7:e33360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunekazu Mizushima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeyama, H., Mizushima, T., Uemura, M. et al. Adipose-Derived Stem Cells Ameliorate Experimental Murine Colitis via TSP-1-Dependent Activation of Latent TGF-β. Dig Dis Sci 62, 1963–1974 (2017). https://doi.org/10.1007/s10620-017-4578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4578-y

Keywords

Navigation