Skip to main content
Log in

Aryl Hydrocarbon Receptor Activation Down-Regulates IL-7 and Reduces Inflammation in a Mouse Model of DSS-Induced Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The pathogenesis of inflammatory bowel disease (IBD) is associated with dysregulation of intestinal immune system. Aryl hydrocarbon receptor (AHR) is believed to control the chronic inflammation in the gut. Besides, interleukin-7 (IL-7) is proved to be an important cytokine that activates mucosal inflammation in IBD. Moreover, intraepithelial lymphocytes (IELs) are one of the key immunological compartments involved in regulating intestinal inflammation. In this study, we investigated the function of 6-formylindolo (3,2-b) carbazole (Ficz), a ligand of AHR, on IL-7, colitis, and IEL phenotypes.

Methods

Colitis was induced by administration of dextran sulfate sodium (DSS) to wild-type C57BL/6J mice for 7 days. Mice were weighted, colon tissues were collected and measured, and histology analyses were performed. IELs were isolated from colon, and the phenotype and activation of IELs were examined using flow cytometry detection. The expression of AHR and IL-7 was measured by immunofluorescence, Western blot, and RT-PCR.

Results

Ficz down-regulated epithelial-derived IL-7 expression in mice with DSS-induced colitis and ameliorated DSS-induced colitis. Ficz also decreased CD8αβ+ and CD8+ IEL subpopulations, enhanced TCRγδ+ IEL subpopulation, and reduced the percentage of activated CD4+ and CD8+ subpopulations.

Conclusions

Ficz could down-regulate epithelial-derived IL-7 expression in mice with DSS-induced colitis and inhibit inflammation in the gastrointestinal tract of mice. AHR-related compounds might be the new and promising therapeutic medicaments for the treatment of patients with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.

    Article  CAS  PubMed  Google Scholar 

  2. De Robertis M, Massi E, Poeta ML, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog. 2011;10:9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kanneganti M, Mino-Kenudson M, Mizoguchi E. Animal models of colitis-associated carcinogenesis. J Biomed Biotechnol. 2011;2011:342637.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Melgar S, Karlsson L, Rehnstrom E, et al. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int Immunopharmacol. 2008;8:836–844.

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol. 2008;21:102–116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol. 2004;36:189–204.

    Article  CAS  PubMed  Google Scholar 

  7. Kerkvliet NI, Baecher-Steppan L, Shepherd DM, et al. Inhibition of TC-1 cytokine production, effector cytotoxic T lymphocyte development and alloantibody production by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Immunol. 1996;157:2310–2319.

    CAS  PubMed  Google Scholar 

  8. Kerkvliet NI. Immunological effects of chlorinated dibenzo-p-dioxins. Environ Health Perspect. 1995;103:47–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–248.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147:629–640.

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe M, Uen Y, Yajima T, et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest. 1995;95:2945–2953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hara T, Shitara S, Imai K, et al. Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol. 2012;189:1577–1584.

    Article  CAS  PubMed  Google Scholar 

  13. Porter BO, Malek TR. Thymic and intestinal intraepithelial T lymphocyte development are each regulated by the gammac-dependent cytokines IL-2, IL-7, and IL-15. Semin Immunol. 2000;12:465–474.

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho TL, Mota-Santos T, Cumano A, Demengeot J, Vieira P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7(-/)-mice. J Exp Med. 2001;194:1141–1150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yamazaki M, Yajima T, Tanabe M, et al. Mucosal T cells expressing high levels of IL-7 receptor are potential targets for treatment of chronic colitis. J Immunol. 2003;171:1556–1563.

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe M, Yamazaki M, Okamoto R, et al. Therapeutic approaches to chronic intestinal inflammation by specific targeting of mucosal IL-7/IL-7R signal pathway. Curr Drug Targets Inflamm Allergy. 2003;2:119–123.

    Article  CAS  PubMed  Google Scholar 

  17. Dooms Hans. Interleukin-7: Fuel for the autoimmune attack. J Autoimmun. 2013;45:40–48.

    Article  CAS  PubMed  Google Scholar 

  18. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol. 2006;24:657–679.

    Article  CAS  PubMed  Google Scholar 

  19. Bradley LM, Haynes L, Swain SL. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol. 2005;26:172–176.

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, Madison B, Gumucio DL, et al. Specific overexpression of IL-7 in the intestinal mucosa: the role in intestinal intraepithelial lymphocyte development. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1421–G1430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fry TJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T-cell maintenance. J Immunol. 2005;174:6571–6576.

    Article  CAS  PubMed  Google Scholar 

  22. Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2011;11:445–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Poussier P, Ning T, Banerjee D, et al. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J Exp Med. 2002;195:1491–1497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Montufar-Solis D, Garza T, Klein JR. T-cell activation in the intestinal mucosa. Immunol Rev. 2007;215:189–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mosley RL, Klein JR. A rapid method for isolating murine intestine intraepithelial lymphocytes with high yield and purity. J Immunol Methods. 1992;156:19–26.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Ma J, Takeuchi M, et al. Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor. Investig Ophthalmol Visual Sci. 2010;51:2109–2117.

    Article  Google Scholar 

  27. Benson JM, Shepherd DM. Aryl hydrocarbon receptor activation by TCDD reduces inflammation associated with Crohn’s disease. Toxicol Sci. 2011;120:68–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Schulz VJ, Smit JJ, Willemsen KJ, et al. Activation of the aryl hydrocarbon receptor suppresses sensitization in a mouse peanut allergy model. Toxicol Sci. 2011;123:491–500.

    Article  CAS  PubMed  Google Scholar 

  29. Nohara K, Pan X, Tsukumo S, et al. Constitutively active aryl hydrocarbon receptor expressed specifically in T-lineage cells causes thymus involution and suppresses the immunization-induced increase in splenocytes. J Immunol. 2005;174:2770–2777.

    Article  CAS  PubMed  Google Scholar 

  30. von Freeden-Jeffry U, Davidson N, Wiler R, Fort M, Burdach S, Murray R. IL-7 deficiency prevents development of a non-T cell non-B cell-mediated colitis. J Immunol. 1998;161:5673–5680.

    Google Scholar 

  31. Shinohara T, Nemoto Y, Kanai T, et al. Upregulated IL-7 receptor alpha expression on colitogenic memory CD4þ T cells may participate in the development and persistence of chronic colitis. J Immunol. 2011;186:2623–2632.

    Article  CAS  PubMed  Google Scholar 

  32. Okada E, Yamazaki M, Tanabe M, et al. IL-7 exacerbates chronic colitis with expansion of memory IL-7Rhigh CD4+ mucosal T cells in mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G745–G754.

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe M, Yamazaki M, Okamoto R, et al. Therapeutic approaches to chronic intestinal inflammation by specific targeting of mucosal IL-7/IL-7R signal pathway. Curr Drug Targets Inflamm Allergy. 2003;2:119–123.

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Madison B, Gumucio DL, et al. Specific overexpression of IL-7 in the intestinal mucosa: the role in intestinal intraepithelial lymphocyte development. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1421–G1430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vidali F, Di Sabatino A, Broglia F, et al. Increased CD8+ intraepithelial lymphocyte infiltration and reduced surface area to volume ratio in the duodenum of patients with ulcerative colitis. Scand J Gastroenterol. 2010;45:684–689.

    Article  CAS  PubMed  Google Scholar 

  36. Yang H, Gumucio DL, Teitelbaum DH. Intestinal specific overexpression of interleukin-7 attenuates the alternation of intestinal intraepithelial lymphocytes after total parenteral nutrition administration. Ann Surg. 2008;248:849–856.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cheroutre H. In IBD eight can come before four. Gastroenterology. 2006;131:667–670.

    Article  CAS  PubMed  Google Scholar 

  38. Tajima M, et al. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med. 2008;205:1019–1027.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nancey S, et al. CD8+ cytotoxic T cells induce relapsing colitis in normal mice. Gastroenterology. 2006;131:485–496.

    Article  CAS  PubMed  Google Scholar 

  40. Jabri B, et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology. 2000;118:867–879.

    Article  CAS  PubMed  Google Scholar 

  41. Komano H, et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc Natl Acad Sci USA. 1995;92:6147–6151.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Guy-Grand D, DiSanto JP, Henchoz P, et al. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-γ, TNF) in the induction of epithelial cell death and renewal. Eur J Immunol. 1998;28:730–744.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts SJ, et al. T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA. 1996;93:11774–11779.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Montufar-Solis D, Garza T, Klein JR. T-cell activation in the intestinal mucosa. Immunol Rev. 2007;215:189–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (NSFC 81330013 and NSFC 81272078 to H.Y., NSFC 81200288 to W.S.W., NSFC 81270451 to W.D.X) and the Program of Changjiang Scholars and Innovative Research (IRT 13050 to HY).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Xu, C., Sun, L. et al. Aryl Hydrocarbon Receptor Activation Down-Regulates IL-7 and Reduces Inflammation in a Mouse Model of DSS-Induced Colitis. Dig Dis Sci 60, 1958–1966 (2015). https://doi.org/10.1007/s10620-015-3632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3632-x

Keywords

Navigation