Skip to main content
Log in

Influence of Rictor and Raptor Expression of mTOR Signaling on Long-Term Outcomes of Patients with Hepatocellular Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Aberrant signaling mediated by the mammalian target of rapamycin (mTOR) occurs at high frequency in hepatocellular carcinoma (HCC), indicating that mTOR is a candidate for targeted therapy. mTOR forms two complexes called mTORC1 (mTOR complexed with raptor) and mTORC2 (mTOR complexed with rictor). There are minor studies of the expression kinetics of mTORC1 and mTORC2 in HCC.

Methods

We studied 62 patients with HCC who underwent curative resection. We used univariate and multivariate analyses to identify factors that potentially influence disease and overall survival after hepatectomy. The mRNA and protein levels of mTOR, rictor and raptor in cancer and non-cancer tissues were analyzed using quantitative RT-PCR, immunohistochemistry and Western blotting.

Results/Conclusion

High ratio of the levels of rictor and raptor mRNAs in tumors was identified as independent prognostic indicators for disease-free survival. Low and high levels of preoperative serum albumin and mTOR mRNA in the tumor, respectively, were identified as independent indicators of overall survival. HCC is likely to recur early after hepatic resection in patients with high levels of mTOR and rictor mRNAs and high rictor/raptor ratios in cancer tissues. We conclude that analysis of mTOR expression in cancer tissues represents an essential strategy to predict HCC recurrence after curative treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosch X, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19:271–285.

    Article  CAS  PubMed  Google Scholar 

  2. Taylor-Robinson SD, Foster GR, Arora S, et al. Increase in primary liver cancer in the UK 1979-94. Lancet. 1997;350:1142–1143.

    Article  CAS  PubMed  Google Scholar 

  3. EI-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med. 1999;340:745–750.

    Article  Google Scholar 

  4. Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000;232:10–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–484.

    Article  CAS  PubMed  Google Scholar 

  6. Kenerson HL, Aicher LD, True LD, et al. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 2002;62:5645–5650.

    CAS  PubMed  Google Scholar 

  7. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    Article  CAS  PubMed  Google Scholar 

  8. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–2963.

    Article  CAS  PubMed  Google Scholar 

  9. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37:19–24.

    Article  CAS  PubMed  Google Scholar 

  10. Majumder PK, Febbo PG, Bikoff R, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10:594–601.

    Article  CAS  PubMed  Google Scholar 

  11. Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–537.

    Article  CAS  PubMed  Google Scholar 

  12. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25:6436–6446.

    Article  CAS  PubMed  Google Scholar 

  13. Nardella C, Chen Z, Salmena L, et al. Abberrant Rheb-mediated mTOR1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev. 2008;22:2172–2177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lu ZH, Shvartsman MB, Lee AY, et al. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res. 2010;70:3287–3298.

  15. Dudkin L, Dilling MB, Cheshire PJ, et al. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Clin Cancer Res. 2001;7:1758–1764.

    CAS  PubMed  Google Scholar 

  16. Liu L, Li F, Cardelli JA, et al. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene. 2006;25:7029–7040.

    Article  CAS  PubMed  Google Scholar 

  17. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature. 2006;441:424–430.

    Article  CAS  PubMed  Google Scholar 

  18. Wolpin BM, Hezel AF, Abrams T, et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27:193–198.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–348.

    Article  CAS  PubMed  Google Scholar 

  20. Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of AKT/PKB by the rictor-mTOR complex. Science. 2005;307:1098–1101.

    Article  CAS  PubMed  Google Scholar 

  21. Sahin F, Kannangai R, Adegbola O, et al. mTOR and p70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10:8421–8425.

    Article  CAS  PubMed  Google Scholar 

  22. Schumacher G, Oidtmann M, Rueggeberg A, et al. Sirolimus inhibits growth of human hepatoma cells alone or combined with tacrolimus, while tacrolimus promotes cell growth. World J Gastroenterol. 2005;11:1420–1425.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sieghart W, Fuereder T, Schmid K, et al. Mammalian target of rapamycin pathway in hepatocellular carcinomas of patients undergoing liver transplantation. Transplantation. 2007;83:425–432.

    Article  CAS  PubMed  Google Scholar 

  24. Semela D, Piguet AC, Kolev M, et al. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol. 2007;46:840–848.

    Article  CAS  PubMed  Google Scholar 

  25. Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135:1972–1983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Strasberg SM, Belghiti J, Clavien PA. The Brisbane 2000 terminology of liver anatomy and resection. Terminology Committee of the International Hepato-Pancreato-Biliary Association. HPB. 2000;2:333–339.

    Google Scholar 

  27. Couinaud C, ed. Le Foie: Etudes Anatomiques et Chirurgicales. Paris: Masson; 1957.

    Google Scholar 

  28. Woodall CJ, Watt NJ, Clements GB. Simple technique for detecting RNA viruses by PCR in single sections of wax embedded tissue. J Clin Pathol. 1993;46:276–277.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lord RV, Salonga D, Danenberg KD, et al. Telomerase reverse transcriptase expression is increased early in the Barrett’s metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg. 2000;4:135–142.

    Article  CAS  PubMed  Google Scholar 

  30. Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res. 1996;6:995–1001.

    Article  CAS  PubMed  Google Scholar 

  31. Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR. Genome Res. 1996;6:986–994.

    Article  CAS  PubMed  Google Scholar 

  32. Kornmann M, Danenberg KD, Arber N, et al. Inhibition of cyclin D1 expression in human pancreatic cancer cells is associated with increased chemosensitivity and decreased expression of multiple chemoresistance genes. Cancer Res. 1999;59:3505–3511.

    CAS  PubMed  Google Scholar 

  33. Kornmann M, Ishiwata T, Beger HG, et al. Fibroblast growth factor-5 stimulates mitogenic signaling and is overexpressed in human pancreatic cancer: evidence for autocrine and paracrine actions. Oncogene. 1997;15:1417–1424.

    Article  CAS  PubMed  Google Scholar 

  34. Sobin LH, Wittekind C, eds. TNM classification of malignant tumours. 5th ed. New York: Wiley; 1997.

  35. Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem. 2010;10:571–581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu P, Gan W, Inuzuka H, et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol. 2013;15:1340–1350.

    Article  CAS  PubMed  Google Scholar 

  37. Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–1322.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yu Y, Yoon SO, Poulogiannis G, et al. Quantitative phosphoproteomic analysis identifies the adaptor protein Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332:1322–1326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–205.

    Article  CAS  PubMed  Google Scholar 

  40. Trzpis M, McLaughlin PMJ, Leij LMFH, et al. Epithelial cell adhesion molecule. More than a carcinoma marker and adhesion molecule. Am J Pathol. 2007;171:386–395.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Went P, Vasei M, Bubendorf L, et al. Frequent high-level expression of the immunotherapeutic target EpCAM in colon, stomach, prostate and lung cancers. Br J Cancer. 2006;94:128–135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Murakata A, Tanaka S, Mogushi K, et al. Gene expression signature of the gross morphology in hepatocellular carcinoma. Ann Surg. 2011;253:94–100.

    Article  PubMed  Google Scholar 

  43. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20:2072–2079.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Kaibori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaibori, M., Shikata, N., Sakaguchi, T. et al. Influence of Rictor and Raptor Expression of mTOR Signaling on Long-Term Outcomes of Patients with Hepatocellular Carcinoma. Dig Dis Sci 60, 919–928 (2015). https://doi.org/10.1007/s10620-014-3417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3417-7

Keywords

Navigation