Skip to main content

Advertisement

Log in

Targeting Apoptosis in Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Apoptosis is the predominant mechanism of liver cell death in autoimmune hepatitis, and interventions that can modulate this activity are emerging. The aim of this review was to describe the apoptotic mechanisms, possible aberrations, and opportunities for intervention in autoimmune hepatitis. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, apoptosis in liver disease, apoptosis mechanisms, and apoptosis treatment were examined. Apoptosis is overactive in autoimmune hepatitis, and the principal pathway of cell death is receptor mediated. Surface death receptors are activated by extrinsic factors including liver-infiltrating cytotoxic T cells and the cytokine milieu. The executioner caspases 3 and 7 cleave nuclear deoxyribonucleic acid, and the release of apoptotic bodies can stimulate inflammatory, immune, and fibrotic responses. Changes in mitochondrial membrane permeability can be initiated by caspase 8, and an intrinsic pathway of apoptosis can complement the extrinsic pathway. Defects in the apoptosis of activated effector cells can prolong their survival and sustain the immune response. Caspase inhibitors have been used in diverse experimental and human diseases to retard apoptosis. Oligonucleotides that inhibit the signaling of toll-like receptors can limit the presentation of auto-antigens, and inhibitors of apoptosis that extend the survival of effector cells can be blocked by antisense oligonucleotides. Mechanisms that enhance the clearance of apoptotic bodies and affect key signaling pathways are also feasible. Interventions that influence the survival of liver and effector cells by altering their apoptosis are candidates for study in autoimmune hepatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Manns MP, Czaja AJ, Gorham JD, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51:2193–2213.

    CAS  PubMed  Google Scholar 

  2. Kerr JF, Cooksley WG, Searle J, et al. The nature of piecemeal necrosis in chronic active hepatitis. Lancet. 1979;2:827–828.

    CAS  PubMed  Google Scholar 

  3. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol. 1997;151:1205–1213.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Afford S, Randhawa S. Apoptosis. Mol Pathol. 2000;53:55–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1:113–128.

    CAS  PubMed  Google Scholar 

  6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–257.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105:13–20.

    CAS  PubMed  Google Scholar 

  8. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984;142:67–77.

    CAS  PubMed  Google Scholar 

  9. Berg CP, Stein GM, Keppeler H, et al. Apoptosis-associated antigens recognized by autoantibodies in patients with the autoimmune liver disease primary biliary cirrhosis. Apoptosis. 2008;13:63–75.

    CAS  PubMed  Google Scholar 

  10. Zampieri S, Degen W, Ghiradello A, Doria A, van Venrooij WJ. Dephosphorylation of autoantigenic ribosomal P proteins during Fas-L induced apoptosis: a possible trigger for the development of the autoimmune response in patients with systemic lupus erythematosus. Ann Rheum Dis. 2001;60:72–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Greidinger EL, Foecking MF, Ranatunga S, Hoffman RW. Apoptotic U1-70 kd is antigenically distinct from the intact form of the U1-70-kd molecule. Arthritis Rheum. 2002;46:1264–1269.

    CAS  PubMed  Google Scholar 

  12. Dieker JW, Fransen JH, van Bavel CC, et al. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum. 2007;56:1921–1933.

    CAS  PubMed  Google Scholar 

  13. Rosen A, Casciola-Rosen L. Autoantigens in systemic autoimmunity: critical partner in pathogenesis. J Intern Med. 2009;265:625–631.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–788.

    CAS  PubMed  Google Scholar 

  15. Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol. 2003;13:648–656.

    CAS  PubMed  Google Scholar 

  16. Henson PM, Hume DA. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol. 2006;27:244–250.

    CAS  PubMed  Google Scholar 

  17. A-Gonzalez N, Bensinger SJ, Hong C, et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity. 2009;31:245–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–1312.

    CAS  PubMed  Google Scholar 

  19. Kanzler S, Galle PR. Apoptosis and the liver. Semin Cancer Biol. 2000;10:173–184.

    CAS  PubMed  Google Scholar 

  20. Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38:1188–1198.

    CAS  PubMed  Google Scholar 

  21. Zhan SS, Jiang JX, Wu J, et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology. 2006;43:435–443.

    CAS  PubMed  Google Scholar 

  22. Ogawa S, Sakaguchi K, Takaki A, et al. Increase in CD95 (Fas/APO-1)-positive CD4+ and CD8+ T cells in peripheral blood derived from patients with autoimmune hepatitis or chronic hepatitis C with autoimmune phenomena. J Gastroenterol Hepatol. 2000;15:69–75.

    CAS  PubMed  Google Scholar 

  23. Fox CK, Furtwaengler A, Nepomuceno RR, Martinez OM, Krams SM. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis. Liver. 2001;21:272–279.

    CAS  PubMed  Google Scholar 

  24. Bai J, Odin JA. Apoptosis and the liver: relation to autoimmunity and related conditions. Autoimmun Rev. 2003;2:36–42.

    PubMed  Google Scholar 

  25. Patel T, Gores GJ. Apoptosis and hepatobiliary disease. Hepatology. 1995;21:1725–1741.

    CAS  PubMed  Google Scholar 

  26. Thatte U, Dahanukar S. Apoptosis: clinical relevance and pharmacological manipulation. Drugs. 1997;54:511–532.

    CAS  PubMed  Google Scholar 

  27. D’Amelio M, Tino E, Cecconi F. The apoptosome: emerging insights and new potential targets for drug design. Pharm Res. 2008;25:740–751.

    PubMed Central  PubMed  Google Scholar 

  28. O’Reilly LA, Strasser A. Apoptosis and autoimmune disease. Inflamm Res. 1999;48:5–21.

    PubMed  Google Scholar 

  29. Neuman MG. Apoptosis in diseases of the liver. Crit Rev Clin Lab Sci. 2001;38:109–166.

    CAS  PubMed  Google Scholar 

  30. Beland K, Lapierre P, Djilali-Saiah I, Alvarez F. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells. PLoS One. 2012;7:e48192.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol. 2000;2:156–162.

    CAS  PubMed  Google Scholar 

  32. Tsujimoto Y, Nakagawa T, Shimizu S. Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta. 2006;1757:1297–1300.

    CAS  PubMed  Google Scholar 

  33. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322–1326.

    CAS  PubMed  Google Scholar 

  34. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    CAS  PubMed  Google Scholar 

  35. Ren D, Tu HC, Kim H, et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science. 2010;330:1390–1393.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Ekert PG, Read SH, Silke J, et al. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J Cell Biol. 2004;165:835–842.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 1999;13:3179–3184.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Guicciardi ME, Gores GJ. Apoptosis as a mechanism for liver disease progression. Semin Liver Dis. 2010;30:402–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Faubion WA, Gores GJ. Death receptors in liver biology and pathobiology. Hepatology. 1999;29:1–4.

    CAS  PubMed  Google Scholar 

  40. Desbarats J, Duke RC, Newell MK. Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Nat Med. 1998;4:1377–1382.

    CAS  PubMed  Google Scholar 

  41. Nagata S. Apoptosis mediated by the Fas system. Prog Mol Subcell Biol. 1996;16:87–103.

    CAS  PubMed  Google Scholar 

  42. Wajant H. Death receptors. Essays Biochem. 2003;39:53–71.

    CAS  PubMed  Google Scholar 

  43. Oberst A, Pop C, Tremblay AG, et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem. 2010;285:16632–16642.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10:26–35.

    CAS  PubMed  Google Scholar 

  45. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J. 2004;384:201–232.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ma S, Hockings C, Anwari K, et al. Assembly of the Bak apoptotic pore: a critical role for the Bak protein alpha6 helix in the multimerization of homodimers during apoptosis. J Biol Chem. 2013;288:26027–26038.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Grenet J, Teitz T, Wei T, Valentine V, Kidd VJ. Structure and chromosome localization of the human CASP8 gene. Gene. 1999;226:225–232.

    CAS  PubMed  Google Scholar 

  48. Wang J, Chun HJ, Wong W, Spencer DM, Lenardo MJ. Caspase-10 is an initiator caspase in death receptor signaling. Proc Natl Acad Sci USA. 2001;98:13884–13888.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Muhlethaler-Mottet A, Flahaut M, Bourloud KB, et al. Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis. Cell Death Dis. 2011;2:e125.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kischkel FC, Lawrence DA, Tinel A, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276:46639–46646.

    CAS  PubMed  Google Scholar 

  51. Sprick MR, Rieser E, Stahl H, et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 2002;21:4520–4530.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Fischer U, Stroh C, Schulze-Osthoff K. Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene. 2006;25:152–159.

    CAS  PubMed  Google Scholar 

  53. Wachmann K, Pop C, van Raam BJ, et al. Activation and specificity of human caspase-10. Biochemistry. 2010;49:8307–8315.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kahraman A, Gerken G, Canbay A. Apoptosis in immune-mediated liver diseases. Dig Dis. 2010;28:144–149.

    PubMed  Google Scholar 

  55. Kahraman A, Fingas CD, Syn WK, Gerken G, Canbay A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int. 2012;32:370–382.

    CAS  PubMed  Google Scholar 

  56. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol. 2014;20:2515–2532.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Czaja AJ. Review article: Chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther. 2014;40:261–279.

  58. Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology. 2004;39:273–278.

    PubMed  Google Scholar 

  59. Bechmann LP, Jochum C, Kocabayoglu P, et al. Cytokeratin 18-based modification of the MELD score improves prediction of spontaneous survival after acute liver injury. J Hepatol. 2010;53:639–647.

    CAS  PubMed  Google Scholar 

  60. Cheng J, Zhou T, Liu C, et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science. 1994;263:1759–1762.

    CAS  PubMed  Google Scholar 

  61. Cascino I, Fiucci G, Papoff G, Ruberti G. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol. 1995;154:2706–2713.

    CAS  PubMed  Google Scholar 

  62. Eichhorst ST. Modulation of apoptosis as a target for liver disease. Expert Opin Ther Targets. 2005;9:83–99.

    CAS  PubMed  Google Scholar 

  63. Hiraide A, Imazeki F, Yokosuka O, et al. Fas polymorphisms influence susceptibility to autoimmune hepatitis. Am J Gastroenterol. 2005;100:1322–1329.

    CAS  PubMed  Google Scholar 

  64. Inazawa J, Itoh N, Abe T, Nagata S. Assignment of the human Fas antigen gene (Fas) to 10q24.1. Genomics. 1992;14:821–822.

    CAS  PubMed  Google Scholar 

  65. Agarwal K, Czaja AJ, Donaldson PT. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens. 2007;69:227–235.

    CAS  PubMed  Google Scholar 

  66. Ichiki Y, Aoki CA, Bowlus CL, et al. T cell immunity in autoimmune hepatitis. Autoimmun Rev. 2005;4:315–321.

    CAS  PubMed  Google Scholar 

  67. Zipp F, Weller M, Calabresi PA, et al. Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Ann Neurol. 1998;43:116–120.

    CAS  PubMed  Google Scholar 

  68. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol. 2005;6:386–398.

    CAS  PubMed  Google Scholar 

  69. Jodo S, Kobayashi S, Kayagaki N, et al. Serum levels of soluble Fas/APO-1 (CD95) and its molecular structure in patients with systemic lupus erythematosus (SLE) and other autoimmune diseases. Clin Exp Immunol. 1997;107:89–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Fujihara T, Takeuchi T, Tsubota K, et al. Serum soluble Fas/APO-1 is increased in patients with primary Sjogren’s syndrome. Clin Rheumatol. 1998;17:496–499.

    CAS  PubMed  Google Scholar 

  71. Jodo S, Kobayashi S, Nakajima Y, et al. Elevated serum levels of soluble Fas/APO-1 (CD95) in patients with hepatocellular carcinoma. Clin Exp Immunol. 1998;112:166–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Midis GP, Shen Y, Owen-Schaub LB. Elevated soluble Fas (sFas) levels in nonhematopoietic human malignancy. Cancer Res. 1996;56:3870–3874.

    CAS  PubMed  Google Scholar 

  73. Ueno T, Toi M, Tominaga T. Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res. 1999;5:3529–3533.

    CAS  PubMed  Google Scholar 

  74. Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin Cancer Res. 2001;7:1282–1286.

    CAS  PubMed  Google Scholar 

  75. Wyllie AH, Arends MJ, Morris RG, Walker SW, Evan G. The apoptosis endonuclease and its regulation. Semin Immunol. 1992;4:389–397.

    CAS  PubMed  Google Scholar 

  76. Wyllie AH. Apoptosis (the 1992 Frank Rose Memorial Lecture). Br J Cancer. 1993;67:205–208.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Ochi M, Ohdan H, Mitsuta H, et al. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology. 2004;39:1321–1331.

    CAS  PubMed  Google Scholar 

  78. Kahraman A, Schlattjan M, Kocabayoglu P, et al. Major histocompatibility complex class I-related chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology. 2010;51:92–102.

    CAS  PubMed  Google Scholar 

  79. Kohga K, Takehara T, Tatsumi T, et al. Serum levels of soluble major histocompatibility complex (MHC) class I-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma. Cancer Sci. 2008;99:1643–1649.

    CAS  PubMed  Google Scholar 

  80. Holdenrieder S, Eichhorn P, Beuers U, et al. Soluble NKG2D ligands in hepatic autoimmune diseases and in benign diseases involved in marker metabolism. Anticancer Res. 2007;27:2041–2045.

    CAS  PubMed  Google Scholar 

  81. Norris S, Kondeatis E, Collins R, et al. Mapping MHC-encoded susceptibility and resistance in primary sclerosing cholangitis: the role of MICA polymorphism. Gastroenterology. 2001;120:1475–1482.

    CAS  PubMed  Google Scholar 

  82. Cox ST, Madrigal JA, Saudemont A. Diversity and characterization of polymorphic 5′ promoter haplotypes of MICA and MICB genes. Tissue Antigens. 2014. doi:10.1111/tan.12400.

  83. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 2004;23:2134–2145.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Miyazaki K, Yoshida H, Sasaki M, et al. Caspase-independent cell death and mitochondrial disruptions observed in the Apaf1-deficient cells. J Biochem. 2001;129:963–969.

    CAS  PubMed  Google Scholar 

  85. Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature. 2005;434:926–933.

    CAS  PubMed  Google Scholar 

  86. Pop C, Timmer J, Sperandio S, Salvesen GS. The apoptosome activates caspase-9 by dimerization. Mol Cell. 2006;22:269–275.

    CAS  PubMed  Google Scholar 

  87. Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19:4310–4322.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol. 2000;2:476–483.

    CAS  PubMed  Google Scholar 

  89. Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest. 2005;115:2633–2639.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Chandra D, Bratton SB, Person MD, et al. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell. 2006;125:1333–1346.

    CAS  PubMed  Google Scholar 

  91. Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem. 2009;284:21777–21781.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Schimmer AD, Dalili S, Batey RA, Riedl SJ. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 2006;13:179–188.

    CAS  PubMed  Google Scholar 

  93. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006;7:988–994.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Pathan N, Marusawa H, Krajewska M, et al. TUCAN, an antiapoptotic caspase-associated recruitment domain family protein overexpressed in cancer. J Biol Chem. 2001;276:32220–32229.

    CAS  PubMed  Google Scholar 

  95. Yamamoto M, Torigoe T, Kamiguchi K, et al. A novel isoform of TUCAN is overexpressed in human cancer tissues and suppresses both caspase-8- and caspase-9-mediated apoptosis. Cancer Res. 2005;65:8706–8714.

    CAS  PubMed  Google Scholar 

  96. Verhagen AM, Silke J, Ekert PG, et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem. 2002;277:445–454.

    CAS  PubMed  Google Scholar 

  97. Sharief MK, Noori MA, Zoukos Y. Reduced expression of the inhibitor of apoptosis proteins in T cells from patients with multiple sclerosis following interferon-beta therapy. J Neuroimmunol. 2002;129:224–231.

    CAS  PubMed  Google Scholar 

  98. Waiczies S, Weber A, Lunemann JD, et al. Elevated Bcl-X(L) levels correlate with T cell survival in multiple sclerosis. J Neuroimmunol. 2002;126:213–220.

    CAS  PubMed  Google Scholar 

  99. Semra YK, Seidi OA, Sharief MK. Disease activity in multiple sclerosis correlates with T lymphocyte expression of the inhibitor of apoptosis proteins. J Neuroimmunol. 2002;122:159–166.

    CAS  PubMed  Google Scholar 

  100. Semra YK, Seidi OA, Sharief MK. Overexpression of the apoptosis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J Neuroimmunol. 2001;113:268–274.

    CAS  PubMed  Google Scholar 

  101. Bagnoli M, Canevari S, Mezzanzanica D. Cellular FLICE-inhibitory protein (c-FLIP) signalling: a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol. 2010;42:210–213.

    CAS  PubMed  Google Scholar 

  102. Safa AR. c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 2012;34:176–184.

    CAS  PubMed  Google Scholar 

  103. Piao X, Komazawa-Sakon S, Nishina T, et al. c-FLIP maintains tissue homeostasis by preventing apoptosis and programmed necrosis. Sci Signal. 2012;5:ra93.

    PubMed  Google Scholar 

  104. Bona G, Defranco S, Chiocchetti A, et al. Defective function of Fas in T cells from paediatric patients with autoimmune thyroid diseases. Clin Exp Immunol. 2003;133:430–437.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Masuichi H, Seki S, Kitada T, et al. Significant role of apoptosis in type-1 autoimmune hepatitis. Osaka City Med J. 1999;45:61–79.

    CAS  PubMed  Google Scholar 

  106. Canbay A, Taimr P, Torok N, et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest. 2003;83:655–663.

    CAS  PubMed  Google Scholar 

  107. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Czaja AJ. Review article: Prevention and reversal of hepatic fibrosis in autoimmune hepatitis. Aliment Pharmacol Ther. 2014;39:385–406.

    CAS  PubMed  Google Scholar 

  109. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2:965–975.

    CAS  PubMed  Google Scholar 

  110. Canbay A, Higuchi H, Bronk SF, et al. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology. 2002;123:1323–1330.

    CAS  PubMed  Google Scholar 

  111. Canbay A, Feldstein A, Baskin-Bey E, Bronk SF, Gores GJ. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther. 2004;308:1191–1196.

    CAS  PubMed  Google Scholar 

  112. Takehara T, Tatsumi T, Suzuki T, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology. 2004;127:1189–1197.

    CAS  PubMed  Google Scholar 

  113. Tsikrikoni A, Kyriakou DS, Rigopoulou EI, et al. Markers of cell activation and apoptosis in bone marrow mononuclear cells of patients with autoimmune hepatitis type 1 and primary biliary cirrhosis. J Hepatol. 2005;42:393–399.

    CAS  PubMed  Google Scholar 

  114. Taylor PR, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition. Ann Rev Immunol. 2005;23:901–944.

    CAS  Google Scholar 

  115. Leitinger N. The role of phospholipid oxidation products in inflammatory and autoimmune diseases: evidence from animal models and in humans. Subcell Biochem. 2008;49:325–350.

    PubMed  Google Scholar 

  116. Hanayama R, Tanaka M, Miwa K, et al. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417:182–187.

    CAS  PubMed  Google Scholar 

  117. Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007;7:964–974.

    CAS  PubMed  Google Scholar 

  118. Lemke G, Burstyn-Cohen T. TAM receptors and the clearance of apoptotic cells. Ann NY Acad Sci. 2010;1209:23–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–219.

    CAS  PubMed  Google Scholar 

  120. Castrillo A, Tontonoz P. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol. 2004;20:455–480.

    CAS  PubMed  Google Scholar 

  121. Rong GH, Yang GX, Ando Y, et al. Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers. Clin Exp Immunol. 2013;172:95–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–286.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Dranoff JA, Ogawa M, Kruglov EA, et al. Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:G417–G424.

    CAS  PubMed  Google Scholar 

  124. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140:619–630.

    CAS  PubMed  Google Scholar 

  125. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity. 2008;28:468–476.

    PubMed  Google Scholar 

  126. Sun EW, Shi YF. Apoptosis: the quiet death silences the immune system. Pharmacol Ther. 2001;92:135–145.

    CAS  PubMed  Google Scholar 

  127. Ghavami S, Hashemi M, Kadkhoda K, et al. Apoptosis in liver diseases—detection and therapeutic applications. Med Sci Monit. 2005;11:RA337–RA345.

    CAS  PubMed  Google Scholar 

  128. Sun H, Nikolovska-Coleska Z, Yang CY, et al. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J Med Chem. 2004;47:4147–4150.

    CAS  PubMed  Google Scholar 

  129. Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 2006;24:4738–4745.

    CAS  PubMed  Google Scholar 

  130. O’Brien S, Moore JO, Boyd TE, et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2007;25:1114–1120.

    PubMed  Google Scholar 

  131. Masuoka HC, Guicciardi ME, Gores GJ. Caspase inhibitors for the treatment of hepatitis C. Clin Liver Dis. 2009;13:467–475.

    PubMed Central  PubMed  Google Scholar 

  132. Hoglen NC, Hirakawa BP, Fisher CD, et al. Characterization of the caspase inhibitor IDN-1965 in a model of apoptosis-associated liver injury. J Pharmacol Exp Ther. 2001;297:811–818.

    CAS  PubMed  Google Scholar 

  133. Ueno Y, Ohmi T, Yamamoto M, et al. Orally-administered caspase inhibitor PF-03491390 is retained in the liver for prolonged periods with low systemic exposure, exerting a hepatoprotective effect against alpha-fas-induced liver injury in a mouse model. J Pharmacol Sci. 2007;105:201–205.

    CAS  PubMed  Google Scholar 

  134. Witek RP, Stone WC, Karaca FG, et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology. 2009;50:1421–1430.

    CAS  PubMed  Google Scholar 

  135. Anstee QM, Concas D, Kudo H, et al. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J Hepatol. 2010;53:542–550.

    CAS  PubMed  Google Scholar 

  136. Yoshida N, Iwata H, Yamada T, et al. Improvement of the survival rate after rat massive hepatectomy due to the reduction of apoptosis by caspase inhibitor. J Gastroenterol Hepatol. 2007;22:2015–2021.

    CAS  PubMed  Google Scholar 

  137. Faubel S, Edelstein CL. Caspases as drug targets in ischemic organ injury. Curr Drug Targets Immune Endocr Metab Disord. 2005;5:269–287.

    CAS  Google Scholar 

  138. Valentino KL, Gutierrez M, Sanchez R, Winship MJ, Shapiro DA. First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int J Clin Pharmacol Ther. 2003;41:441–449.

    CAS  PubMed  Google Scholar 

  139. Pockros PJ, Schiff ER, Shiffman ML, et al. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology. 2007;46:324–329.

    CAS  PubMed  Google Scholar 

  140. Arends JE, Hoepelman AI, Nanlohy NM, et al. Low doses of the novel caspase-inhibitor GS-9450 leads to lower caspase-3 and -8 expression on peripheral CD4+ and CD8+ T-cells. Apoptosis. 2011;16:959–966.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Baskin-Bey ES, Washburn K, Feng S, et al. Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury. Am J Transplant. 2007;7:218–225.

    CAS  PubMed  Google Scholar 

  142. Santiago-Raber ML, Baudino L, Izui S. Emerging roles of TLR7 and TLR9 in murine SLE. J Autoimmun. 2009;33:231–238.

    CAS  PubMed  Google Scholar 

  143. Lenert PS. Classification, mechanisms of action, and therapeutic applications of inhibitory oligonucleotides for toll-like receptors (TLR) 7 and 9. Mediat Inflamm. 2010;2010:986596.

    Google Scholar 

  144. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998;17:3247–3259.

    PubMed  Google Scholar 

  145. Wang K, Lin B. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis. Cell Signal. 2013;25:1970–1980.

    CAS  PubMed  Google Scholar 

  146. Holcik M, Gibson H, Korneluk RG. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 2001;6:253–261.

    CAS  PubMed  Google Scholar 

  147. Zehntner SP, Bourbonniere L, Moore CS, et al. X-linked inhibitor of apoptosis regulates T cell effector function. J Immunol. 2007;179:7553–7560.

    CAS  PubMed  Google Scholar 

  148. Jost PJ, Grabow S, Gray D, et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature. 2009;460:1035–1039.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Mayer BA, Rehberg M, Erhardt A, et al. Inhibitor of apoptosis proteins as novel targets in inflammatory processes. Arterioscler Thromb Vasc Biol. 2011;31:2240–2250.

    CAS  PubMed  Google Scholar 

  150. Agrawal S. Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta. 1999;1489:53–68.

    CAS  PubMed  Google Scholar 

  151. Hu Y, Cherton-Horvat G, Dragowska V, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 2003;9:2826–2836.

    CAS  PubMed  Google Scholar 

  152. Chen J, Xiao XQ, Deng CM, Su XS, Li GY. Downregulation of xIAP expression by small interfering RNA inhibits cellular viability and increases chemosensitivity to methotrexate in human hepatoma cell line HepG2. J Chemother. 2006;18:525–531.

    CAS  PubMed  Google Scholar 

  153. Gorgani NN, Theofilopoulos AN. Contribution of histidine-rich glycoprotein in clearance of immune complexes and apoptotic cells: implications for ameliorating autoimmune diseases. Autoimmunity. 2007;40:260–266.

    CAS  PubMed  Google Scholar 

  154. Baker BF, Monia BP. Novel mechanisms for antisense-mediated regulation of gene expression. Biochim Biophys Acta. 1999;1489:3–18.

    CAS  PubMed  Google Scholar 

  155. Cui D, Zhang S, Ma J, Han J, Jiang H. Short interfering RNA targeting NF-kappa B induces apoptosis of hepatic stellate cells and attenuates extracellular matrix production. Dig Liver Dis. 2010;42:813–817.

    CAS  PubMed  Google Scholar 

  156. Yonehara S. Death receptor Fas and autoimmune disease: from the original generation to therapeutic application of agonistic anti-Fas monoclonal antibody. Cytokine Growth Factor Rev. 2002;13:393–402.

    CAS  PubMed  Google Scholar 

  157. Orzaez M, Gortat A, Mondragon L, Perez-Paya E. Peptides and peptide mimics as modulators of apoptotic pathways. ChemMedChem. 2009;4:146–160.

    CAS  PubMed  Google Scholar 

  158. Prinz-Hadad H, Mizrachi T, Irony-Tur-Sinai M, et al. Amelioration of autoimmune neuroinflammation by the fusion molecule Fn14.TRAIL. J Neuroinflamm. 2013;10:36.

    CAS  Google Scholar 

  159. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–1034.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–268.

    CAS  PubMed  Google Scholar 

  161. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239–245.

    CAS  PubMed  Google Scholar 

  162. Dong H, Strome SE, Matteson EL, et al. Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest. 2003;111:363–370.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Sabapathy K. Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci. 2012;106:145–169.

    CAS  PubMed  Google Scholar 

  164. Minero VG, Khadjavi A, Costelli P, Baccino FM, Bonelli G. JNK activation is required for TNFalpha-induced apoptosis in human hepatocarcinoma cells. Int Immunopharmacol. 2013;17:92–98.

    CAS  PubMed  Google Scholar 

  165. Lapierre P, Djilali-Saiah I, Vitozzi S, Alvarez F. A murine model of type 2 autoimmune hepatitis: xenoimmunization with human antigens. Hepatology. 2004;39:1066–1074.

    CAS  PubMed  Google Scholar 

  166. Holdener M, Hintermann E, Bayer M, et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Adachi M, Suematsu S, Kondo T, et al. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet. 1995;11:294–300.

    CAS  PubMed  Google Scholar 

  168. Yue HH, Diehl GE, Winoto A. Loss of TRAIL-R does not affect thymic or intestinal tumor development in p53 and adenomatous polyposis coli mutant mice. Cell Death Differ. 2005;12:94–97.

    CAS  PubMed  Google Scholar 

  169. Nakamoto Y, Kaneko S, Fan H, et al. Prevention of hepatocellular carcinoma development associated with chronic hepatitis by anti-fas ligand antibody therapy. J Exp Med. 2002;196:1105–1111.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Pfeffer K, Matsuyama T, Kundig TM, et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993;73:457–467.

    CAS  PubMed  Google Scholar 

  171. Tinmouth J, Lee M, Wanless IR, et al. Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Liver. 2002;22:228–234.

    PubMed  Google Scholar 

  172. Macdonald P, Palmer J, Kirby JA, Jones DE. Apoptosis as a mechanism for cell surface expression of the autoantigen pyruvate dehydrogenase complex. Clini Exp Immunol. 2004;136:559–567.

    CAS  Google Scholar 

  173. Lleo A, Selmi C, Invernizzi P, et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology. 2009;49:871–879.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Lleo A, Bowlus CL, Yang GX, et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology. 2010;52:987–998.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Rong G, Zhong R, Lleo A, et al. Epithelial cell specificity and apotope recognition by serum autoantibodies in primary biliary cirrhosis. Hepatology. 2011;54:196–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Greystoke A, Cummings J, Ward T, et al. Optimisation of circulating biomarkers of cell death for routine clinical use. Ann Oncol. 2008;19:990–995.

    CAS  PubMed  Google Scholar 

  177. Bantel H, Ruck P, Gregor M, Schulze-Osthoff K. Detection of elevated caspase activation and early apoptosis in liver diseases. Eur J Cell Biol. 2001;80:230–239.

    CAS  PubMed  Google Scholar 

  178. Hiley C, Fryer A, Bell J, Hume R, Strange RC. The human glutathione S-transferases. Immunohistochemical studies of the developmental expression of alpha- and pi-class isoenzymes in liver. Biochem J. 1988;254:255–259.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Denk G, Omary AJ, Reiter FP, et al. sICAM, M30, and M65 as serum markers of disease activity and prognosis in cholestatic liver diseases. Hepatol Res. 2014;. doi:10.1111/hepr.12304.

    PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Czaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, A.J. Targeting Apoptosis in Autoimmune Hepatitis. Dig Dis Sci 59, 2890–2904 (2014). https://doi.org/10.1007/s10620-014-3284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3284-2

Keywords

Navigation