Skip to main content

Advertisement

Log in

Epigenetics in Gastrointestinal Stromal Tumors: Clinical Implications and Potential Therapeutic Perspectives

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GIST) represent the most common mesenchymal neoplasms affecting the gastrointestinal tract. Activating mutations in either the KIT or PDGFRa gene are the principal oncogenic triggers with the former accounting for more than 80 % of cases. In the small subset of GIST that are wild type for both the aforementioned changes, other germline or somatic mutations have been identified. GIST exhibit a highly variable clinical behavior and the main prognostic determinants are tumor size, mitotic rate, and location. It is, however, strongly believed that, beyond classic genetics, additional epigenetic phenomena such as DNA hypomethylation and hypermethylation, microRNA alterations, and chromatin modifications underlie GIST tumorigenesis and influence the clinical course and response to standard treatment. This review aims to illuminate current advances in terms of epigenetics in GIST, as well as possible implications in prognosis and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Corless CL, Heinrich MC. Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol. 2008;3:557–586.

    Article  PubMed  CAS  Google Scholar 

  2. Tan CB, Zhi W, Shahzad G, Mustacchia P. Gastrointestinal stromal tumors: a review of case reports, diagnosis, treatment, and future directions. ISRN Gastroenterol. 2012;2012:595968.

    PubMed  Google Scholar 

  3. Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA. 2011;108:314–318.

    Article  PubMed  CAS  Google Scholar 

  4. Miranda C, Nucifora M, Molinari F, et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:1769–1776.

    Article  PubMed  CAS  Google Scholar 

  5. Blay JY, Le Cesne A, Cassier PA, Ray-Coquard IL. Gastrointestinal stromal tumors (GIST): a rare entity, a tumor model for personalized therapy, and yet ten different molecular subtypes. Discov Med. 2012;13:357–367.

    PubMed  Google Scholar 

  6. Bird A. Perceptions of epigenetics. Nature. 2007;447:396–398.

    Article  PubMed  CAS  Google Scholar 

  7. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159.

    Article  PubMed  CAS  Google Scholar 

  8. Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci. 2009;66:596–612.

    Article  PubMed  CAS  Google Scholar 

  9. Igarashi S, Suzuki H, Niinuma T. A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clin Cancer Res. 2010;16:5114–5123.

    Article  PubMed  CAS  Google Scholar 

  10. Okamoto Y, Sawaki A, Ito S, et al. Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. Gut. 2012;61:392–401.

    Article  PubMed  CAS  Google Scholar 

  11. Gromova P, Rubin BP, Thys A, Cullus P, Erneux C, Vanderwinden JM. ENDOGLIN/CD105 is expressed in KIT positive cells in the gut and in gastrointestinal stromal tumours. J Cell Mol Med. 2012;16:306–317.

    Article  PubMed  CAS  Google Scholar 

  12. House MG, Guo M, Efron DT et al. Tumor suppressor gene hypermethylation as a predictor of gastric stromal tumor behavior. J Gastrointest Surg. 2003;7:1004–1014; discussion 1014.

    Google Scholar 

  13. Ricci R, Arena V, Castri F, et al. Role of p16/INK4a in gastrointestinal stromal tumor progression. Am J Clin Pathol. 2004;122:35–43.

    Article  PubMed  CAS  Google Scholar 

  14. Perrone F, Tamborini E, Dagrada GP, et al. 9p21 locus analysis in high-risk gastrointestinal stromal tumors characterized for c-kit and platelet-derived growth factor receptor alpha gene alterations. Cancer. 2005;104:159–169.

    Article  PubMed  CAS  Google Scholar 

  15. Schneider-Stock R, Boltze C, Lasota J, et al. High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol. 2003;21:1688–1697.

    Article  PubMed  CAS  Google Scholar 

  16. Braggio E, Guimaraes DP, Bacchi CE, et al. The contribution of genetic and epigenetic changes to predict gastrointestinal stromal tumors behavior. J Clin Oncol. 2006;24:9542.

    Google Scholar 

  17. Saito K, Sakurai S, Sano T, et al. Aberrant methylation status of known methylation-sensitive CpG islands in gastrointestinal stromal tumors without any correlation to the state of c-kit and PDGFRA gene mutations and their malignancy. Cancer Sci. 2008;99:253–259.

    Article  PubMed  CAS  Google Scholar 

  18. Martinho O, Gouveia A, Silva P, Pimenta A, Reis RM, Lopes JM. Loss of RKIP expression is associated with poor survival in GISTs. Virchows Arch. 2009;455:277–284.

    Article  PubMed  CAS  Google Scholar 

  19. Yang J, Ikezoe T, Nishioka C, et al. Long-term exposure of gastrointestinal stromal tumor cells to sunitinib induces epigenetic silencing of the PTEN gene. Int J Cancer. 2012;130:959–966.

    Article  PubMed  CAS  Google Scholar 

  20. Belinsky MG, Rink L, Flieder DB, et al. Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of SDHA in wild-type SDHB-negative gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2013;52:214–224.

    Article  PubMed  CAS  Google Scholar 

  21. Killian JK, Kim SY, Miettinen M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013.

  22. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  PubMed  CAS  Google Scholar 

  23. Zagni C, Chiacchio U, Rescifina A. Histone methyltransferase inhibitors: novel epigenetic agents for cancer treatment. Curr Med Chem. 2013;20:167–185.

    Article  PubMed  CAS  Google Scholar 

  24. Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72:1126–1136.

    Article  PubMed  CAS  Google Scholar 

  25. Liu Y, Tseng M, Perdreau SA, et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 2007;67:2685–2692.

    Article  PubMed  CAS  Google Scholar 

  26. Bauer S, Parry JA, Muhlenberg T, et al. Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells. Cancer Res. 2010;70:150–159.

    Article  PubMed  CAS  Google Scholar 

  27. Floris G, Debiec-Rychter M, Sciot R, et al. High efficacy of panobinostat towards human gastrointestinal stromal tumors in a xenograft mouse model. Clin Cancer Res. 2009;15:4066–4076.

    Article  PubMed  CAS  Google Scholar 

  28. Dumont AG, Yang Y, Reynoso D, Katz D, Trent JC, Hughes DP. Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors. Carcinogenesis. 2012;33:1674–1683.

    Article  PubMed  CAS  Google Scholar 

  29. Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm Genome. 2008;19:517–525.

    Article  PubMed  CAS  Google Scholar 

  30. Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E, Dervenoulas J. The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol. 2010;84:1–16.

    Article  PubMed  CAS  Google Scholar 

  31. Subramanian S, Lui WO, Lee CH, et al. MicroRNA expression signature of human sarcomas. Oncogene. 2008;27:2015–2026.

    Article  PubMed  CAS  Google Scholar 

  32. Koelz M, Lense J, Wrba F, Scheffler M, Dienes HP, Odenthal M. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors. Int J Oncol. 2011;38:503–511.

    Article  PubMed  CAS  Google Scholar 

  33. Kim WK, Park M, Kim YK, et al. MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation. Clin Cancer Res. 2011;17:7584–7594.

    Article  PubMed  CAS  Google Scholar 

  34. Choi HJ, Lee H, Kim H, et al. MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site. Int J Cancer. 2010;126:1640–1650.

    PubMed  CAS  Google Scholar 

  35. Haller F, von Heydebreck A, Zhang JD, et al. Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol. 2010;220:71–86.

    Article  PubMed  CAS  Google Scholar 

  36. Yamamoto H, Kohashi K, Fujita A, Oda Y. Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor. Mod Pathol. 2013;26:563–571.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios D. Sioulas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sioulas, A.D., Vasilatou, D., Pappa, V. et al. Epigenetics in Gastrointestinal Stromal Tumors: Clinical Implications and Potential Therapeutic Perspectives. Dig Dis Sci 58, 3094–3102 (2013). https://doi.org/10.1007/s10620-013-2785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2785-8

Keywords

Navigation