Skip to main content
Log in

Variable Impact of CD39 in Experimental Murine Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Dysregulation of immune responses in inflammatory bowel diseases (IBD) results in intestinal inflammation and vascular injury while exacerbating systemic disease. CD39 is an ectonucleotidase, expressed by T regulatory cells and dendritic cells, that hydrolyzes extracellular nucleotides to modify those cellular immune responses implicated in IBD. Genetic polymorphisms of CD39 have been linked to Crohn’s disease while gene deletion in mice exacerbates dextran sodium sulphate-induced colitis.

Aim

The aim of this study was to test how global deletion of CD39 in mice impacts other models of experimental colitis.

Methods

Colitis was induced in CD39-null and -wt mice, using trinitrobenzene sulfonic acid (TNBS, 125 mg/kg) administered intrarectally. Oxazolone colitis (1.5% oxazolone in 50% alcohol) was induced in comparable groups. Morphology, clinical and molecular parameters, and FACS analyses of lamina propria mononuclear cells (LPMC) were examined in CD39-null mice. CD39 expression was analyzed in human IBD biopsies.

Results

Paradoxically, TNBS colitis in CD39-null mice was characterized by improved survival, favorable clinical scores, and decreased MPO activity, when compared to wt mice (P < 0.05). LPMC from TNBS colitis contained significantly increased amounts of T-cells (CD3+ and CD4+) and TNF-α mRNA expression were increased over those in CD39 null mice (P < 0.05). In contrast, oxazolone treated CD39-null and wt mice had comparable outcomes. In both ulcerative colitis and Crohn’s disease, CD39 is present at high levels in intestinal tissue biopsies.

Conclusions

TNBS colitis was attenuated in CD39-null mice whereas oxazolone-induced colitis was not impacted. Impaired adaptive cellular immune reactivity in the CD39-null environment appears protective in hapten-mediated Th1-type colitis. CD39 is expressed at high levels in clinical IBD tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity. 2002;17:629–638.

    Article  PubMed  CAS  Google Scholar 

  2. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998;115:182–205.

    Article  PubMed  CAS  Google Scholar 

  3. Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–1517.

    Article  PubMed  Google Scholar 

  4. Apte MV, Haber PS, Darby SJ, et al. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut. 1999;44:534–541.

    Article  PubMed  CAS  Google Scholar 

  5. Buell G, Lewis C, Collo G, North RA, Surprenant A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. Embo J. 1996;15:55–62.

    PubMed  CAS  Google Scholar 

  6. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol. 2004;240:31–304.

    Article  PubMed  CAS  Google Scholar 

  7. Dranoff JA, Kruglov EA, Robson SC, Braun N, Zimmermann H, Sevigny J. The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in a novel functional compartment within the liver. Hepatology. 2002;36:1135–1144.

    Article  PubMed  CAS  Google Scholar 

  8. Di Virgilio F, Solini A. P2 receptors: new potential players in atherosclerosis. Br J Pharmacol. 2002;135:831–842.

    Article  PubMed  CAS  Google Scholar 

  9. Hou M, Harden TK, Kuhn CM, et al. UDP acts as a growth factor for vascular smooth muscle cells by activation of P2Y(6) receptors. Am J Physiol Heart Circ Physiol. 2002;282:H784–792.

    PubMed  CAS  Google Scholar 

  10. Atarashi K, Nishimura J, Shima T, et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455:808–812.

    Article  PubMed  CAS  Google Scholar 

  11. Enjyoji K, Sevigny J, Lin Y, et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med. 1999;5:1010–1017.

    Article  PubMed  CAS  Google Scholar 

  12. Robson SEK, Goepfert C, Imai M, et al. Modulation of extracellular nucleotide-mediated signaling by CD39/nucleoside triphosphate diphosphohydrolase-1. Drug Dev Res. 2001;53:193–207.

    Article  CAS  Google Scholar 

  13. Kaczmarek E, Koziak K, Sevigny J, et al. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem. 1996;271:33116–33122.

    Article  PubMed  CAS  Google Scholar 

  14. Sevigny J, Sundberg C, Braun N, et al. Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood. 2002;99:2801–2809.

    Article  PubMed  CAS  Google Scholar 

  15. Kansas GS, Tedder TF. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol. 1991;147:4094–4102.

    PubMed  CAS  Google Scholar 

  16. Vrij AA, Rijken J, van Wersch JW, Stockbrugger RW. Coagulation and fibrinolysis in inflammatory bowel disease and in giant cell arteritis. Pathophysiol Haemost Thromb. 2003;33:75–83.

    Article  PubMed  CAS  Google Scholar 

  17. Mizumoto N, Kumamoto T, Robson SC, et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med. 2002;8:358–365.

    Article  PubMed  CAS  Google Scholar 

  18. Takashima A, Mummert M, Kitajima T, Matsue H. New technologies to prevent and treat contact hypersensitivity responses. Ann NY Acad Sci. 2000;919:205–213.

    Article  PubMed  CAS  Google Scholar 

  19. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–1265.

    Article  PubMed  CAS  Google Scholar 

  20. Kunzli BM, Nuhn P, Enjyoji K, et al. Disordered pancreatic inflammatory responses and inhibition of fibrosis in CD39-null mice. Gastroenterology. 2008;134:292–305.

    Article  PubMed  CAS  Google Scholar 

  21. Matsuura M, Okazaki K, Nishio A, et al. Therapeutic effects of rectal administration of basic fibroblast growth factor on experimental murine colitis. Gastroenterology. 2005;128:975–986.

    Article  PubMed  CAS  Google Scholar 

  22. Boirivant M, Fuss IJ, Chu A, Strober W. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188:1929–1939.

    Article  PubMed  CAS  Google Scholar 

  23. Kunzli BM, Berberat PO, Giese T, et al. Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J Physiol Gastrointest Liver Physiol. 2007;292:G223–230.

    Article  PubMed  CAS  Google Scholar 

  24. De Jong YP, Comiskey M, Kalled SL, et al. Chronic murine colitis is dependent on the CD154/CD40 pathway and can be attenuated by anti-CD154 administration. Gastroenterology. 2000;119:715–723.

    Article  PubMed  Google Scholar 

  25. Bauer P, Russell JM, Granger DN. Role of endotoxin in intestinal reperfusion-induced expression of E-selectin. Am J Physiol. 1999;276:G479–484.

    PubMed  CAS  Google Scholar 

  26. Atkinson B, Dwyer K, Enjyoji K, Robson SC. Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets. Blood Cells Mol Dis. 2006;36(2):217–222.

    Google Scholar 

  27. Dranoff JA, Ogawa M, Kruglov EA, et al. Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2004;287:G417–424.

    Article  PubMed  CAS  Google Scholar 

  28. Dwyer KM, Robson SC, Nandurkar HH, et al. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest. 2004;113:1440–1446.

    PubMed  CAS  Google Scholar 

  29. Friedman DJ, Kunzli BM YIAR, Sevigny J, et al. From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci USA. 2009;106:16788–16793.

    Article  PubMed  CAS  Google Scholar 

  30. Steinbrink K, Kolde G, Sorg C, Macher E. Induction of low zone tolerance to contact allergens in mice does not require functional Langerhans cells. J Invest Dermatol. 1996;107:243–247.

    Article  PubMed  CAS  Google Scholar 

  31. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004;113:1490–1497.

    PubMed  CAS  Google Scholar 

  32. Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB. Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol. 2006;177:2765–2769.

    PubMed  CAS  Google Scholar 

  33. Kolachala VL, Vijay-Kumar M, Dalmasso G, et al. A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology. 2008;135:861–870.

    Article  PubMed  Google Scholar 

  34. Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP. Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol. 2009;182:4957–4964.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the German Research Foundation (DFG, KU-1957/3-1), the Lautenschläger Stipendium der Heidelberger Stiftung Chirurgie (to BMK) and the National Institutes of Health (NIH HL63972 and HL076540; to SCR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Robson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzli, B.M., Berberat, P.O., Dwyer, K. et al. Variable Impact of CD39 in Experimental Murine Colitis. Dig Dis Sci 56, 1393–1403 (2011). https://doi.org/10.1007/s10620-010-1425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1425-9

Keywords

Navigation