Skip to main content
Log in

Effect of Fat Feeding on Pro-oxidant and Anti-oxidant Enzyme Systems in Rat Intestine: Possible Role in the Turnover of Enterocytes

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Immature epithelial cells generated in the crypt base undergo differentiation while progressing to the villus tip, where the cells upon apoptosis are detached from the underlying muscular tissue. We previously reported that lipid peroxidation might be involved in the turnover of enterocytes across the crypt–villus axis in rat intestine (Dig Dis Sci 52:1840–1844, 2007). To examine whether long-term feeding of fat with different fatty-acid composition influences this process, in the present study we investigated the effect of feeding fish oil (n − 3) and corn oil (n − 6) polyunsaturated fatty acids on lipid per-oxidation and anti-oxidant systems in different epithelial cell fractions isolated in rat intestine. Feeding fish oil or corn oil markedly enhanced lipid per-oxidation levels of enterocytes throughout villus height compared with control, but there was no difference in the distribution profile of pro- and anti-oxidant enzyme systems and lipid per-oxidation across the crypt–villus axis under these conditions. Analysis of lipid peroxidation levels in different cell fractions revealed that the thiobarbituric acid reactive substance were 9- to 11-fold higher at the villus tip compared with at the crypt base. The activities of glutathione reductase and glutathione-S-transferase were 2- to 5-fold higher in villus tip compared to the crypt region. However, the activities of superoxide dismutase and catalase were 6- to 8-fold high at the crypt base compared with at villus tip cells. Immunocytolocalization of superoxide dismutase showed high staining in crypt base compared with that in villus, tip cells. These findings further suggest that generation of reactive oxygen species in enterocytes across the crypt–villus axis may be involved in turnover of enterocytes across the crypt–villus unit in rat intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TBRS:

Thiobarbituric acid reactive substance

GST:

Glutathione-S-transferase

GR:

Glutathione reductase

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

References

  1. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine columnar cell. Am J Anat. 1974;141:461–479. doi:10.1002/aja.1001410403.

    Article  PubMed  CAS  Google Scholar 

  2. Hall PA, Coates PJ, Ansari B. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci. 1994;107:3569–3577.

    PubMed  CAS  Google Scholar 

  3. Potten CS, Grant HK. The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. Br J Cancer. 1998;78:993–1003.

    PubMed  CAS  Google Scholar 

  4. Moss SF, Attia L, Scholes JV, et al. Increased small intestinal apoptosis in coeliac disease. Gut. 1996;39:811–817. doi:10.1136/gut.39.6.811.

    Article  PubMed  CAS  Google Scholar 

  5. Hyoh Y, Nishida M, Tegoshi T, et al. Enhancement of apoptosis with loss of cellular adherence in the villus epithelium of the small intestine after infection with the nematode Nippostrongylus brasiliensis in rats. Parasitology. 1999;119:199–207. doi:10.1017/S003118209900462X.

    Article  PubMed  Google Scholar 

  6. Stiiber E, Buschenfld A, Von FA, et al. Intestinal crypt cell apoptosis in murine acute graft versus host disease is mediated by tumour necrosis factor alpha and not by the FasL–Fas interaction: effect of pentoxifylline on the development of mucosal atrophy. Gut. 1999;45:229–235.

    Article  Google Scholar 

  7. Ames BN, Shigeenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–7922. doi:10.1073/pnas.90.17.7915.

    Article  PubMed  CAS  Google Scholar 

  8. Turan A, Mahmood A. The profile of antioxidant and lipid peroxidation across crypt–villus axis in rat intestine. Dig Dis Sci. 2007;52:1840–1844. doi:10.1007/s10620-006-9633-z.

    Article  PubMed  CAS  Google Scholar 

  9. Weiser MM. Intestinal epithelial cells surface membrane glycoprotein synthesis. J Biol Chem. 1973;215:2536–2541.

    Google Scholar 

  10. Bergmeyer MVC. Methods of Enzymatic Analysis. New York, USA: Academic; 1963:783–785.

    Google Scholar 

  11. Dahlqvist A. Method for the assay of intestinal disaccharidases. Anal Biochem. 1964;7:18–25. doi:10.1016/0003-2697(64)90115-0.

    Article  PubMed  CAS  Google Scholar 

  12. Horn HD, Brun FM. Methods of Enzymatic Analysis (Bergmeyer HU Ed.). New York, USA: Academic; 1971:875–881.

  13. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139.

    PubMed  CAS  Google Scholar 

  14. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978;186:189–195. doi:10.1016/0003-9861(78)90479-4.

    Article  PubMed  CAS  Google Scholar 

  15. Luck H. Methods of Enzymatic Analysis. New York, USA: Academic; 1971:885–888.

    Google Scholar 

  16. Beuge JA, Aust SD. Microsomal lipid peroxidation. Metab Enzmol. 1978;52:302–310.

    Google Scholar 

  17. Dudeja PK, Brasitus TA. Inactivation of rat small intestinal brush-border membrane alkaline phosphatase by oxygen free radicals. Gastroenterology. 1993;105:357–366.

    PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosenbrough NS, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951;193:265–275.

    PubMed  CAS  Google Scholar 

  19. Mahmood A, Shao J, Alpers DH. Rat enterocytes secrete SLPs containing alkaline phosphatase and cubilin in response to corn oil feeding. Am J Physiol Gastrointest Liver Physiol. 2003;285:G433–G441.

    PubMed  CAS  Google Scholar 

  20. War PA, Johnson KJ, Warren JS, Kunkel RG. Immune-complexes, oxygen radical and lung injury. In: Oxygen Radical and Tissue Injury: Proc. Brook Lodge Symp, Augusta, MI, USA, April 27–29; 1987:107–114.

  21. Cable S, Kedinger M, Dauca M. Peroxisomes and peroxisomal enzymes along the crypt–villus axis of the rat intestine. Differentiation. 1993;54:99–108.

    PubMed  CAS  Google Scholar 

  22. Kaur M, Kaur J, Ojha S, Mahmood A. Ethanol affect on lipid peroxidation and glutathione mediated defense in rat small intestine. Alcohol. 1998;15:65–69. doi:10.1016/S0741-8329(97)00099-2.

    Article  PubMed  CAS  Google Scholar 

  23. Brasitus TA, Dudeja PK. Regional differences in the lipid composition and fluidity of rat colonic brush-border membranes. Biochim Biophys Acta. 1985;819:10–17. doi:10.1016/0005-2736(85)90189-0.

    Article  PubMed  CAS  Google Scholar 

  24. Sanders LM, Henderson CE, Hong MY, et al. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J Nutr. 2004;134:3233–3238.

    PubMed  CAS  Google Scholar 

  25. Basivireddy J, Vasudevan A, Jacob M, Balasubramanian KA. Indomethacin-induced mitochondrial dysfunction and oxidative stress in villus enterocytes. Biochem Pharmacol. 2002;64:339–349. doi:10.1016/S0006-2952(02)01067-5.

    Article  PubMed  CAS  Google Scholar 

  26. Ko Y, Lii CK, Ou CC, Liu JY, Lin WL, Chen HW. Comparison of the effect of fish oil and corn oil on chemical-induced hepatic enzyme-altered foci in rats. J Agric Food Chem. 2000;48:4144–4150. doi:10.1021/jf0000631.

    Article  PubMed  CAS  Google Scholar 

  27. Chapkin R, Hong M, Fan Y, et al. Dietary n − 3 PUFA alter colonocyte mitochondrial membrane composition and function. Lipids. 2002;37:193–199. doi:10.1007/s11745-002-0880-8.

    Article  PubMed  CAS  Google Scholar 

  28. Hong MY, Chapkin RS, Barhoumi R, et al. Fish oil increases mitochondrial phospholipid unsaturation, unregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis. 2002;23:1919–1926. doi:10.1093/carcin/23.11.1919.

    Article  PubMed  CAS  Google Scholar 

  29. Johnson KJ, Wilson BS, Till GO, Ward PA. Acnli lung injury in rat caused by immunoglobulin A immune complex. J Clin Invest. 1984;74:358–368. doi:10.1172/JCI111431.

    Article  PubMed  CAS  Google Scholar 

  30. Jakson J, Schraeafsfatter IU, Idyslop PA. Role of oxidants in DNA damage: hydroxyl radical the synergistic DNA damaging effect of asbestoses and cigarette smoke. J Clin Invest. 1987;80:1090–1095. doi:10.1172/JCI113165.

    Article  Google Scholar 

Download references

Acknowledgment

Aasma Turan is a recipient of a Senior Research Fellowship from the Indian Council of Medical Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhtar Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turan, A., Gill, R., Dudeja, P.K. et al. Effect of Fat Feeding on Pro-oxidant and Anti-oxidant Enzyme Systems in Rat Intestine: Possible Role in the Turnover of Enterocytes. Dig Dis Sci 54, 1229–1236 (2009). https://doi.org/10.1007/s10620-008-0490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0490-9

Keywords

Navigation