Skip to main content

Advertisement

Log in

Synaptic Plasticity: The New Explanation of Visceral Hypersensitivity in Rats with Trichinella spiralis Infection?

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim Synaptic plasticity plays an important role in affecting the intensity of visceral reflex. It may also be involved in the development of visceral hypersensitivity. The aim of this study was to investigate the role of synaptic plasticity on visceral hypersensitivity of rats infected by Trichinella spiralis. Methods Thirty male Sprague–Dawley (SD) rats were randomly divided into control, acute, and chronic infection groups, and were investigated at 1 week after adaptive feeding and at 2 and 8 weeks post infection (PI) by oral administration of 1 ml phosphate-buffered saline (PBS) containing 8,000 Trichinella spiralis larvae. Visceral sensitivity was evaluated by electromyography (EMG) recording during colorectal distension. Intestinal inflammation was observed by hematoxylin-eosin (HE) staining. Synaptic ultrastructure parameters, such as postsynaptic density (PSD) length, synaptic cleft, and number of synaptic vesicles, were examined by transmission electron microscopy (TEM). The expression of protein associated with synaptic plasticity, including postsynaptic density-95 (PSD-95), synaptophysin, calbindin-28 K, N-methyl-D-aspartate receptor-1 (NMDA-R1), α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA-R), and glial cell line-derived neurotrophic factor (GDNF), were analyzed by Western blot. Results (1) Visceral hypersensitivity was noted in the chronic infection group, although the inflammation was nearly eliminated (< 0.05). Severe inflammation and downregulation of visceral sensitivity were observed in the acute infection group (< 0.05). (2) There were many more synaptic vesicles and longer PSD in the chronic infection group than in the control group (< 0.05, respectively). However, in comparison with control rats, disappearance of mitochondria cristae in the synapses, and decrease of synaptic vesicles and length of PSD were observed in the acute infection group. There was no significant difference in width of synaptic cleft among the three groups. (3) Compared with the control, the expression of proteins associated with synaptic plasticity was significantly upregulated during chronic infection phase (< 0.05), and downregulated during acute infection phase. Conclusion Synaptic plasticity was observed in SD rats infected by Trichinella spiralis and was associated with visceral sensitivity, which suggests that it may play an important role in the formation of visceral hypersensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Read NW. Irritable bowel syndrome. In: Feldman M, Friedman LS, Sleisenger MH, eds. Gastrointestinal and liver disease. Philadelphia: Saunders; 2002:1794–1804.

  2. Spiller RC. Postinfectious irritable bowel syndrome. Gastroenterology. 2003;124:1662–1671. doi:10.1016/S0016-5085(03)00324-X.

    Article  PubMed  Google Scholar 

  3. García Rodríguez LA, Ruigómez A, Wallander MA, Johansson S, Olbe L. Detection of colorectal tumor and inflammatory bowel disease during follow-up of patients with initial diagnosis of irritable bowel syndrome. Scand J Gastroenterol. 2000;35:306–311. doi:10.1080/003655200750024191.

    Article  PubMed  Google Scholar 

  4. Park H. The pathophysiology of irritable bowel syndrome: inflammation and motor disorder. Korean J Gastroenterol. 2006;47(2):101–110.

    Google Scholar 

  5. Accarino AM, Azpiroz F, Malagelada JR. Selective dysfunction of mechanosensitive intestinal afferents in irritable bowel syndrome. Gastroenterology. 1995;108:636–643. doi:10.1016/0016-5085(95)90434-4.

    Article  PubMed  CAS  Google Scholar 

  6. Mertz H, Naliboff B, Munakata J, Niazi N, Mayer EA. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995;109:40–52. doi:10.1016/0016-5085(95)90267-8.

    Article  PubMed  CAS  Google Scholar 

  7. Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39(suppl 3):S184–S193. doi:10.1097/01.mcg.0000156403.37240.30.

    Article  PubMed  Google Scholar 

  8. Grundy D. What activates visceral afferents? Gut. 2004; 53(suppl 2):ii5–ii8.

  9. Park CH, Joo YE, Choi SK, Rew JS, Kim SJ, Lee MC. Activated mast cells infiltrate in close proximity to enteric nerves in diarrhea-predominant irritable bowel syndrome. J Korean Med Sci. 2003;18(2):204–210.

    Google Scholar 

  10. Gebhart GF. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications IV. Visceral afferent contributions to the pathobiology of visceral pain. Am J Physiol Gastrointest Liver Physiol. 2000;278:G834–G838.

    PubMed  CAS  Google Scholar 

  11. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693–702. doi:10.1053/j.gastro.2003.11.055.

    Article  PubMed  Google Scholar 

  12. Giaroni C, Somaini L, Marino F, Cosentino M, Senaldi A, De Ponti F, et al. Modulation of enteric cholinergic neurons by hetero- and autoreceptors: cooperation among inhibitory inputs. Life Sci. 1999;65:813–821. doi:10.1016/S0024-3205(99)00308-2.

    Article  PubMed  CAS  Google Scholar 

  13. Lomax AE, Mawe GM, Sharkey KA. Synaptic facilitation and enhanced neuronal excitability in the submucosal plexus during experimental colitis in guinea-pig. J Physiol. 2005;564:863–875. doi:10.1113/jphysiol.2005.084285.

    Article  PubMed  CAS  Google Scholar 

  14. Dong WZ, Li ZS, Zou DW, Xu GM, Zou XP, Zhu AY, et al. The changes of mucosal mast cells and substance P in patients with irritable bowel syndrome. Zhonghua Nei Ke Za Zhi. 2003;42(9):611–614.

    PubMed  Google Scholar 

  15. Del Valle-Pinero AY, Suckow SK, Zhou Q, Perez FM, Verne GN, Caudle RM. Expression of the N-methyl-D-aspartate receptor NR1 splice variants and NR2 subunit subtypes in the rat colon. Neuroscience. 2007;147(1):164–173. doi:10.1016/j.neuroscience.2007.02.063.

    Article  PubMed  CAS  Google Scholar 

  16. Linden DR, Sharkey KA, Mawe GM. Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J Physiol. 2003;547:589–601. doi:10.1113/jphysiol.2002.035147.

    Article  PubMed  CAS  Google Scholar 

  17. Yang XD, Faber DS. Initial synaptic efficacy influences induction and expression of long-term changes in transmission. Proc Natl Acad Sci USA. 1991;88(10):4299–4303. doi:10.1073/pnas.88.10.4299.

    Article  PubMed  CAS  Google Scholar 

  18. Billy AJ, Walters ET. Long-term expansion and sensitization of mechanosensory receptive fields in Aplysia support an activity-dependent model of whole-cell sensory plasticity. J Neurosci. 1989;9(4):1254–1262.

    PubMed  CAS  Google Scholar 

  19. Xu H, He J, Richardson JS, Li XM. The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem. 2004;91:1380–1388. doi:10.1111/j.1471-4159.2004.02827.x.

    Article  PubMed  CAS  Google Scholar 

  20. Thomas EA, Sjövall H, Bornstein JC. Computational model of the migrating motor complex of the small intestine. Am J Physiol Gastrointest Liver Physiol. 2004;286(4):564G–572G.

    Article  Google Scholar 

  21. Galligan JJ. Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br J Pharmacol. 2004;141(8):1294–1302. doi:10.1038/sj.bjp.0705761.

    Article  PubMed  CAS  Google Scholar 

  22. Bornstein JC, Furness JB, Smith TK, Trussell DC. Synaptic responses evoked by mechanical stimulation of the mucosa in morphologically characterized myenteric neurons of the guinea pig ileum. J Neurosci. 1991;11:505–518.

    PubMed  CAS  Google Scholar 

  23. Smith TK, Bornstein JC, Furness JB. Convergence of reflex pathways excited by distension and mechanically deforming the mucosa onto morphologically characterized myenteric neurons of the guinea-pig small intestine. J Neurosci. 1992;12:1502–1510.

    PubMed  CAS  Google Scholar 

  24. Castro GA, Fairbairn D. Carbohydrates and lipids in Trichinella spiralis larvae and their utilization in vitro. J Parasitol. 1969;55:51–58. doi:10.2307/3277345.

    Article  PubMed  CAS  Google Scholar 

  25. Kamp EH, Jones RCWIII, Tillman SR, Gebhart GF. Quantitative assessment and characterization of visceral nociception and hyperalgesia in mice. Am J Physiol Gastrointest Liver Physiol. 2003;284:G434.

    PubMed  CAS  Google Scholar 

  26. Al Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology. 2000;119:1276–1285. doi:10.1053/gast.2000.19576.

    Article  PubMed  CAS  Google Scholar 

  27. Pozzo Miller LD, Landis DM. Cytoplasmic structure in organotypic cultures of rat hippocampus prepared by rapid freezing and freeze-substitution fixation. Synapse. 1993;13(3):195–205. doi:10.1002/syn.890130302.

    Article  PubMed  CAS  Google Scholar 

  28. Landis DM, Payne HR, Weinstein LA. Changes in the structure of synaptic junctions during climbing fiber synaptogenesis. Synapse. 1989;4:281–293. doi:10.1002/syn.890040404.

    Article  PubMed  CAS  Google Scholar 

  29. Barbara G, Vallance BA, Collins SM. Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology. 1997;113(4):1224–1232. doi:10.1053/gast.1997.v113.pm9322517.

    Article  PubMed  CAS  Google Scholar 

  30. Torrents D, Vergara P. In vivo changes in the intestinal reflexes and the response to CCK in the inflamed small intestine of the rat. Am J Physiol Gastrointest Liver Physiol. 2000;279(3):G543–G551.

    PubMed  CAS  Google Scholar 

  31. Jacobson K, McHugh K, Collins SM. Experimental colitis alters myenteric nerve function at inflamed and noninflamed sites in the rat. Gastroenterology. 1995;109(3):718–722. doi:10.1016/0016-5085(95)90378-X.

    Article  PubMed  CAS  Google Scholar 

  32. Chen H, Duan LP, Zhu YL. Persistent intestinal motility disorder after transient intestinal nematode infection in rats. Beijing Da Xue Xue Bao. 2004;36(2):198–201.

    PubMed  Google Scholar 

  33. Duan Li ping, Chen Hong, Wen Yan, Ye Si hong, Zhe Yuan li, Yang Yang ling. Development of a transient intestinal infection model in rat. Chin J Compar Med. 2003;13(3):142–145.

    Google Scholar 

  34. Bercík P, Wang L, Verdú EF. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology. 2004;127(1):179–187. doi:10.1053/j.gastro.2004.04.006.

    Article  PubMed  Google Scholar 

  35. Xu-Friedman MA, Regehr WG. Structural contributions to short-term synaptic plasticity. Physiol Rev. 2004;84(1):69–85. doi:10.1152/physrev.00016.2003.

    Article  PubMed  CAS  Google Scholar 

  36. Harris KM, Sultan P. Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology. 1995;34:1387–1395 doi:10.1016/0028-3908(95)00142-S.

    Google Scholar 

  37. Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985;41:1017–1028. doi:10.1016/S0092-8674(85)80082-9.

    Article  PubMed  CAS  Google Scholar 

  38. Becher A, Drenckhahn A, Pahner I, et al. The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J Neurosci. 1999;19:1922–1931.

    PubMed  CAS  Google Scholar 

  39. Alder J, Kanki H, Valtorta F, Greengard P, Poo MM. Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses. J Neurosci. 1995;15:511–519.

    PubMed  CAS  Google Scholar 

  40. Alder J, Xie ZP, Valtorta F, Poo MM. Antibodies to synaptophysin interfere with transmitter secretion at neuromuscular synapses. Neuron. 1992;9:759–768. doi:10.1016/0896-6273(92)90038-F.

    Article  PubMed  CAS  Google Scholar 

  41. Swain MG, Agro A, Blennerhassett P, Stanisz A, Collins SM. Increased levels of substance P in the myenteric plexus of Trichinella-infected rats. Gastroenterology. 1992;102(6):1913–1919.

    PubMed  CAS  Google Scholar 

  42. El Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. PSD-95 involvement in maturation of excitatory synapses. Science. 2000;290:1364–1368.

    PubMed  CAS  Google Scholar 

  43. Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J Physiol. 2003;546(Pt3):665–675. doi:10.1113/jphysiol.2002.033803.

    Article  PubMed  CAS  Google Scholar 

  44. Chen L, Chetkovich DM, Petralia RS, Sweeney N, Kawaski Y, Wenthold RJ, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature. 2000;408:936–943. doi:10.1038/35046031.

    Article  PubMed  CAS  Google Scholar 

  45. Mockett B, Coussens C, Abraham WC. NMDA receptor-mediated metaplasticity during the induction of long-term depression by low-frequency stimulation. Eur J Neurosci. 2002;15(11):1819–1826. doi:10.1046/j.1460-9568.2002.02008.x.

    Article  PubMed  Google Scholar 

  46. Delgado JY, Coba M, Anderson CN, et al. NMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840. J Neurosci. 2007;27(48):13210–13121.

    Google Scholar 

  47. Lin Y, Skeberdis VA, Francesconi A, Bennett MVL, Zukin RS. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci. 2004;24:10138–10148. doi:10.1523/JNEUROSCI.3159-04.2004.

    Article  PubMed  CAS  Google Scholar 

  48. Lavezzari G, McCallum J, Dewey CM, Roche KW. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci. 2004;24:6383–6391. doi:10.1523/JNEUROSCI.1890-04.2004.

    Article  PubMed  CAS  Google Scholar 

  49. Béïque JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci USA. 2006;103(51):19535–19540. doi:10.1073/pnas.0608492103.

    Article  PubMed  Google Scholar 

  50. Chen W, Yang J, Shi J, Liu X, Guan X. Effects of electroacupuncture on the pain threshold and the NMDA R1 mRNA in DRG on neuropathic pain rats. J Huazhong Univ Sci Technolog Med Sci. 2003;23(2):108–111.

    PubMed  CAS  Google Scholar 

  51. Zhou Q, Caudle RM, Price DD, Del Valle-Pinero AY, Verne GN. Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats. Mol Pain. 2006;2(1):3. doi:10.1186/1744-8069-2-3.

    Article  PubMed  Google Scholar 

  52. Messenger JP, Bornstein JC, Furness JB. Electrophysiological and morphological classification of myenteric neurons in the proximal colon of the guinea-pig. Neuroscience. 1994;60(1):227–244. doi:10.1016/0306-4522(94)90217-8.

    Article  PubMed  CAS  Google Scholar 

  53. Chard PS, Jordán J, Marcuccilli CJ, Miller RJ, Leiden JM, Roos RP. Regulation of excitatory transmission at hippocampal synapses by calbindin D28 k. Proc Natl Acad Sci USA. 1995;92(11):5144–5148. doi:10.1073/pnas.92.11.5144.

    Article  PubMed  CAS  Google Scholar 

  54. Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 1996;19:514–520. doi:10.1016/S0166-2236(96)10058-8.

    Article  PubMed  CAS  Google Scholar 

  55. Ribchester RR, Thomson D, Haddow LJ, Ushkaryov YA. Enhancement of spontaneous transmitter release at neonatal mouse neuromuscular junctions by the glial cell line-derived neurotrophic factor (GDNF). J Physiol. 1998;512(Pt 3):635–641. doi:10.1111/j.1469–7793.1998.635bd.x.

    Article  PubMed  CAS  Google Scholar 

  56. Focke PJ, Swetlik AR, Schilz JL, Epstein ML. GDNF and insulin cooperate to enhance the proliferation and differentiation of enteric crest-derived cells. J Neurobiol. 2003;55:151–164. doi:10.1002/neu.10204.

    Article  PubMed  CAS  Google Scholar 

  57. Liou JC, Yang RS, Fu WM. Regulation of quantal secretion by neurotrophic factors at developing motoneurons in Xenopus cell cultures. J Physiol. 1997;503:129–139. doi:10.1111/j.1469-7793.1997.129bi.x.

    Article  PubMed  CAS  Google Scholar 

  58. Wang LJ, Lu YY, Muramatsu S, Ikeguchi K, et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci. 2002;22:6920–6928.

    PubMed  CAS  Google Scholar 

  59. von Boyen GB, Reinshagen M, Steinkamp M, Adler G, Kirsch J. Enteric nervous plasticity and development: dependence on neurotrophic factors. J Gastroenterol. 2002;37:583–588. doi:10.1007/s005350200093.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Natural Science Foundation of China (30670957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Sheng, L., Guan, Y. et al. Synaptic Plasticity: The New Explanation of Visceral Hypersensitivity in Rats with Trichinella spiralis Infection?. Dig Dis Sci 54, 937–946 (2009). https://doi.org/10.1007/s10620-008-0444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0444-2

Keywords

Navigation