Skip to main content

Advertisement

Log in

The Pathogenic Mechanism of Severe Acute Pancreatitis Complicated with Renal Injury: A Review of Current Knowledge

  • Review Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The onset of severe acute pancreatitis (SAP) is clinically harmful as it may rapidly progress from a local pancreatic inflammation into proemial systemic inflammatory reactions. Patients with SAP have a high mortality, with most cases of death resulting from complications involving the failure of organs other than the pancreas. The distinctive feature of SAP is that once it starts, it may aggrevate the clinical condition of the patient continuously, so that the levels of injury to the other organs surpass the severity of the pancreatic lesion, even causing multiple organ failure and, ulitmately, death. In clinical practice, the main complications in terms of organ dysfunctions are shock, acute respiratory failure, acute renal failure, among others. The acute renal injury caused by SAP is not only able to aggravate the state of pancreatitis, but it also develops into renal failure and elevates patients’ mortality. Studies have found that the injury due to massive inflammatory mediators, microcirculation changes and apoptosis, among others, may play important roles in the pathogenic mechanism of acute renal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley EL III (1993) A clinically based classification system for acute pancreatitis: summary of the international symposium on acute pancreatitis, Atlanta. Arch Surg 128:586–590 [PMID:8489394]

    PubMed  Google Scholar 

  2. Yousaf M, McCallion K, Diamond T (2003) Management of severe acute pancreatitis. Br J Surg 90:407–420 [PMID:12673741]

    PubMed  CAS  Google Scholar 

  3. Hartwig W, Werner J, Muller CA, Uhl W, Buchler MW (2002) Surgical management of severe pancreatitis including sterile necrosis. J Hepatobil Pancreat Surg 9:429–435 [PMID:12483264]

    Google Scholar 

  4. Hartwig W, Werner J, Uhl W, Buchler MW (2002) Management of infection in acute pancreatitis. J Hepatobil Pancreat Surg 9:423–428 [PMID:12483263]

    Google Scholar 

  5. Abu-Zidan FM, Windsor JA (2002) Lexipafant and acute pancreatitis: a critical appraisal of the clinical trials. Eur J Surg 168:215–219 [PMID:12440758]

    PubMed  CAS  Google Scholar 

  6. Wu WK (2001) The etiological factor and pathology (in Chinese). World Chin J Digestol 9:410–411

    Google Scholar 

  7. He L, Chen SF, Cao XH, Zhang LD, Pan LL, Zhou Z (2003) Changes of serum level of IL-15, IL-18 and sTNF-1R in patients with acute pancreatitis (in Chinese). World Chin J Digestol 11:57–60

    CAS  Google Scholar 

  8. Wang CH, Qian DK, Zhu YL, Tang XQ (2001) Significance of changes of serum level of TNF and IL-6 in patients with acute pancreatitis (in Chinese). World Chin J Digestol 9:1434

    Google Scholar 

  9. Xia SH, Zhao XY, Guo P, Da SP (2001) Hemocirculatory disorder in dogs with severe acute pancreatitis and intervention of platelet activating factor antagonist (in Chinese). World Chin J Digestol 9:550–554

    CAS  Google Scholar 

  10. Li Y, Qian JQ, Qing RY, Shen M (2000) Changes of immune function in patients with acute pancreatitis (in Chinese). World Chin J Digestol 8:923–925

    Google Scholar 

  11. Yuan YZ (2001) New progress and new technology of pancreatology. Publishing Company of Shanghai Technology Literature, Shanghai

    Google Scholar 

  12. Makhija R, Kingsnorth AN (2002) Cytokine storm in acute pancreatitis. J Hepatobil Pancreat Surg 9:401–410 [PMID:12483260]

    Google Scholar 

  13. Keck T, Balcom JH IV, Fernandez-del Castillo C, Antoniu BA, Warshaw AL (2002) Matrix metalloproteinase-9 promotes neutrophil migration and alveolar capillary leakage in pancreatitis-associated lung injury in the rat. Gastroenterology 122:188–201 [PMID:11781293]

    PubMed  CAS  Google Scholar 

  14. Shimada M, Andoh A, Hata K, Tasaki K, Araki Y, Fujiyama Y, Bamba T (2002) IL-6 secretion by human pancreatic periacinar mypfibroblasts in reponse to inflammatory mediators. J Immunol 168:861–868 [PMID:11777983]

    PubMed  CAS  Google Scholar 

  15. Rau B, Baumgart K, Paszkowski AS, Mayer JM, Beger HG (2001) Clinical relevance of caspase-1 activated cytokines in acute pancreatitis: high correlation of serum interleukin-18 with pancreatic necrosis and systemic complications. Crit Care Med 29:1556–1562 [PMID:11505126]

    PubMed  CAS  Google Scholar 

  16. Foitzik T, Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ (2000) Endothelin receptor blockade in severe acute pancreatitis leads to systemic enhancement of microcirculation,stabilization of capillary permeability,and improved survival rates. Surgery 128:399–407 [PMID:10965310]

    PubMed  CAS  Google Scholar 

  17. Lundberg AH, Granger DN, Russell J, Sabek O, Henry J, Gaber L, Kotb M, Gaber AO (2000) Quantitative measurement of P-and E-selectin adhesion molecules in acute pancreatitis: correlation with distant organ injury. Ann Surg 231:213–222 [PMID:10674613]

    PubMed  CAS  Google Scholar 

  18. Kunsch C, Ruben SW, Rosen CA (1992) Selection of optimal kappa B/Rel DNA-binding motifs: interation of both submits of NF kappa B with DNA is required for transcriptional activation. Mol Cell Biol 12:4412–4421 [PMID:1406630]

    PubMed  CAS  Google Scholar 

  19. Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor- kappa B in pulmonary diseases. Chest 117:1482–1487 [PMID:10807839]

    PubMed  CAS  Google Scholar 

  20. Orian A, Whiteside S, Israel A, Stancovski I, Schwartz AL, Ciechanover A (1995) Ubiquitin-mediated processing of NF kappa B transcriptional activator precursor p105: reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J Biol Chem 270:21707–21714 [PMID:7665588]

    PubMed  CAS  Google Scholar 

  21. Lipsett PA (2001) Serum cytokines, proteins, and receptors in acute pancreatitis: mediators, marker, or more of the same? Crit Care Med 29:1642–1644 [PMID:11505151]

    PubMed  CAS  Google Scholar 

  22. Hirota M, Nozawa F, Okabe A, Shibata M, Beppu T, Shimada S, Egami H, Yamaguchi Y, Ikei S, Okajima T, Okamoto K, Ogawa M (2000) Relations ship between plasma cytokine concentration and multiple organ failure in patients with acute pancreatitis. Pancreas 21:141–146 [PMID:10975707]

    PubMed  CAS  Google Scholar 

  23. Chen H, Li F, Cheng YF, Sun JB (2001) Pathogenic role of neutrophils in evolution of acute pancreatitis in rats (in Chinese) . World Chin J Digestol 9:776–779

    Google Scholar 

  24. De Dios I, Perez M, de la Mano A, Sevillano S, Orfao A, Ramudo L, Manso MA (2002) Contribution of circulating leukocytes to cytokine production in pancreatic duct obstruction-induced acute pancreatitis in rats. Cytokine 20:295–303 [PMID:12633572]

    PubMed  Google Scholar 

  25. Descamps FJ, Van den Steen PE, Martens E, Ballaux F, Geboes K, Opdenakker G (2003) Gelatinase B is diabetogenic in acute and chronic pancreatitis by cleaving insulin. FASEB J 17:887–889 [PMID:12626433]

    PubMed  CAS  Google Scholar 

  26. Ammori BJ (2003) Role of the gut in the course of severe acute pancreatitis. Pancreas 26:122–129 [PMID:12604908]

    PubMed  Google Scholar 

  27. Shields CJ, Sookhai S, Winter DC, Dowdall JF, Kingston G, Parfrey N, Wang JH, Kirwan WO, Redmond HP (2001) Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline. Surg Infect 2:215–224 [PMID:12593711]

    CAS  Google Scholar 

  28. Demols A, Deviere J (2003) New frontiers in the pharmacological prevention of post-ERCP pancreatitis: the cytokines. JOP 4:49–57 [PMID:12555016]

    PubMed  Google Scholar 

  29. Zhao H, Chen JW, Zhou YK, Zhou XF, Li PY (2003) Influence of platelet activating factor on expression of adhesion molecules in experimental pancreatitis. World J Gastroenterol 9:338–341 [PMID:12532462]

    PubMed  CAS  Google Scholar 

  30. Zhou Z, Chen Y, Yu Y, Chen H (2002) Hemorheology and expression of neutrophil adhesion molecules CD18 and CD62L in pancreatic microcirculation of Caerulein induced experimental acute pancreatitis. Zhonghua Yufang Yixue Zazhi 36:528–530 [PMID:12411162]

    PubMed  Google Scholar 

  31. Shields CJ, Winter DC, Redmond HP (2002) Lung injury in acute pancreatitis: mechanisms, prevention, and therapy. Curr Opin Crit Care 8:158–163 [PMID:12386518]

    PubMed  Google Scholar 

  32. Song AM, Bhagat L, Singh VP, Van Acker GG, Steer ML, Saluja AK (2002) Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 283:G1166–G1174 [PMID:12381531]

    PubMed  CAS  Google Scholar 

  33. Brady M, Bhatia M, Christmas S, Boyd MT, Neoptolemos JP, Slavin J (2002) Expression of the chemokines MCP-1/JE and cytokine-induced neutrophil chemoattractant in early acute pancreatitis. Pancreas 25:260–269 [PMID:12370537]

    PubMed  Google Scholar 

  34. Clemons AP, Holstein DM, Galli A, Saunders C (2002) Cerulein-induced acute pancreatitis in the rats is significantly ameliorated by treatment with MEK1/2 inhibitors U0126 and PD98059. Pancreas 25:251–259 [PMID:12370536]

    PubMed  Google Scholar 

  35. Hartwig W, Carter EA, Jimenez RE, Jones R, Fischman AJ, Fernandez-Del Castillo C, Warshaw AL (2002) Neutrophil metabolic activity but not neutrophil sequestration reflects the development of pancreatitis-associated lung injury. Crit Care Med 30:2075–2082 [PMID:12352044]

    PubMed  CAS  Google Scholar 

  36. Mikami Y, Takeda K, Shibuya K, Qiu-Feng H, Egawa S, Sunamura M, Matsuno S (2002) Peritoneal inflammatory cells in acute pancreatitis: relationship of infiltration dynamics and cytokine production with severity of illness. Surgery 132:86–92 [PMID:12110800]

    PubMed  Google Scholar 

  37. Cassatella MA (1995) The production of cytokines by polymorphonuclear neutrophils. Immunol Today 16:21–26 [PMID:7880385]

    PubMed  CAS  Google Scholar 

  38. Ni QX, Zhang N, Zhang JH, Zhang YL, Xiang Y, Zhen SG, Luo JM (1998) Study on combined prevention and treatment of acute necrotizing pancreatitis lung injury by somatostatin and somatotropin (in Chinese). Chin J Exp Surg 15:404–406

    Google Scholar 

  39. Ogawa M (1998) Acute pancreatitis and cytokines: “second attack” by septic complication leads to organ failure. Pancreas 16:312–315 [PMID:9548672]

    PubMed  CAS  Google Scholar 

  40. Hughes CB, Gaber LW, Mohey el Din AB, Grewal HP, Kotb M, Mann L, Gaber AO (1996) Inhibition of TNF alpha improves survival in an experimental model of acute pancreatitis. Am Surg 62:8–13 [PMID:8540653]

    PubMed  CAS  Google Scholar 

  41. Klar E, Messmer K, Warshaw AL, Herfarth C (1990) Pancreatic ischemia in experimental acute pancreatic: mechanism, significance and therapy. Br J Surg 77:1205–1210 [PMID:2252994]

    PubMed  CAS  Google Scholar 

  42. Persidskii IV, Kudriavets II, Barshtein IA (1991) The action of tumor necrosis factor on the microvascular endothelium and its role in the morphological changes in the internal organs. Biull Eksp Biol Med 3:294–297 [PMID:2054509]

    Google Scholar 

  43. Zhang QH, Cai R, Wu SJ, Jiang YF, Zhang YL (1997) Changes of inflammatory mediators in rats with acute necrotizing pancreatitis and effects of somatostatin. Chin Med J 5:355

    Google Scholar 

  44. Pohlman TH, Stanness KA, Beatty PG, Dchs HD, Harlan JM (1986) An endothelial cell surface factors induced in vitro by lipopolysaccharide interleukin-1 and tumor necrosis factor increases neutrophils adherence by a WD 18-dependent mechanism. J Immunol 136:4548–4553 [PMID:3486903]

    PubMed  CAS  Google Scholar 

  45. Norman JG, Franz MG, Fink GS, Messina J, Fabri PJ, Gower (1995) Decreased mortality of severe acute pancreatitis after cytokine blockade. Ann Surg 221:625–631 [PMID:7794067]

    PubMed  CAS  Google Scholar 

  46. Norman JG, Fink G, Franz M, Guffey J, Carter G, Davison B, Sexton C, Glaccum M (1996) Active interleukin-1 receptor required for maximal progression of acute pancreatitis. Ann Surg 223:163–169 [PMID:8597510]

    PubMed  CAS  Google Scholar 

  47. Fink G, Yang J, Carter G, Norman J (1997) Acute pancreatitis-induced enzyme release and necrosis are attenuated by IL-1 antagonism through an indirect mechanism. J Surg Res 67:94–97 [PMID:9070189]

    PubMed  CAS  Google Scholar 

  48. Kusske AM, Rongione AJ, Reber HA (1996) Cytokines and acute pancreatitis. Gastroenterology 110:639–642 [PMID:8566616]

    PubMed  CAS  Google Scholar 

  49. Lentz SR, Tsiang M, Sadler JE (1991) Regulation of thrombomodulin by tumour necrosis factor-α: comparison of transcriptional and posttranscriptional mechanisms. Blood 77:542–550 [PMID:1846763]

    PubMed  CAS  Google Scholar 

  50. Gross V, Andreessen R, Leser HG, Ceska M, Lehl E, Lausen M, Farthmann EH, Scholmerich J (1992) Interleukin-10 and neutrophil activation in acute pancreatitis. Eur J Clin Invest 22:200–203 [PMID:1582445]

    Article  PubMed  CAS  Google Scholar 

  51. Kimura Y, Torimura T, Ueno T, Inuzuka S, Tanikawa K (1995) Transforming growth factor beta 1 extracellular matrix and inflammatory cells in wound repair using a closed duodenal loop pancreatitis model rat, immunohistochemical study. Scand J Gastroenterol 30:707–714 [PMID:7481536]

    PubMed  CAS  Google Scholar 

  52. Konturek PC, Dembinski A, Warzecha Z, Ceranowicz P, Konturek SJ, Stachura J, Hahn EG (1997) Expression of transforming growth factor-beta 1 and epidermal growth factor in caerulein-induced pancreatitis in rat. J Physiol Pharmacol 48:59–72 [PMID: 9098826]

    PubMed  CAS  Google Scholar 

  53. Pfeilschifter, Muhl H, Pignat W, Marki F, Vanden, Bosch H (1993) Cytokine regulation of group II phospholipase A2 expression in glomerular mesangial cells. Eur J Clin Pharmacol 44[Suppl 1]:S7–S9 [PMID:8387428]

    PubMed  CAS  Google Scholar 

  54. Fink MP (1993) PLA2: potential mediators of the systemic inflammatory reponse syndrome and the multiple organ dys-function syndrome. Crit Care Med 21:957–959 [PMID:8319474]

    Article  PubMed  CAS  Google Scholar 

  55. Makela A, Sternby B, Kuusi T (1990) Phospholipase A2 activity and concentration in several body fluids in patients with acute pancreatitis. Scand J Gastroenterol 25:944–950 [PMID:2218399]

    PubMed  CAS  Google Scholar 

  56. Mirkovic D (2000) The role of phospholipase A2 in the pathogenesis of respiratory damage in hemorrhagic necrotizing pancreatitis assessment of a new experimental model. Vojnosnnit Pregl 57:625–633 [PMID:11332353]

    CAS  Google Scholar 

  57. Nevalainen TJ, Haapamaki MM, Gronroos JM (2000) Roles of secretory phospholipases A2 in inflammatory diseases and trauma. Biochim Biophys Acta 1488:83–90 [PMID:11080679]

    PubMed  CAS  Google Scholar 

  58. Mao EQ, Zhang SD, Han TQ, Wang JC, Zhang CL (1997) Pancreatic ishemia: a continuous injury factor in acute necrotic pancreatitis. Zhonghua Waike Zazhi 35:150–152 [PMID:10374521]

    PubMed  CAS  Google Scholar 

  59. Wang CH, Liao JX, Li DK, Liao XW, Qin M (1998) Plasma thromboxane A and prostacyclin changes in acute pancreatitis rats after perfusion of microcirculation improving drugs via various ways (in Chinese). Chin J Exp Surg 15:396–398

    Google Scholar 

  60. Zhou XZ, Mao QS, Chen YQ, Shen HX (2000) The relationship between pathological characters and changes of oxygen free radicals in rats with acute pancreatitis (in Chinese). World Chin J Digestol 8:108–109

    Google Scholar 

  61. Gong SW, Ai ZL, Zhou YK (1995) Protective effects of prostacyclin on acute necrotizing pancreatitis and its venal damage in rats. Zhonghua Waike Zazhi 33:197–200 [PMID:7587668]

    PubMed  CAS  Google Scholar 

  62. Sun CL, Li JS, Zhu WM, Wang JJ (1998) Influence of prostaglandin E1 on pancreatic blood flow of pancreatitis (in Chinese). Rat Chin Crit Care Med 10:154–157

    Google Scholar 

  63. Gu JC, Qin ZY, Wang Y (1999) Changes of prostaglandin I2 and thromboxane A2 in severe acute pancreatitis rats complicated with lung injury (in Chinese). World Chin J Digestol 7:275

    Google Scholar 

  64. Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190:117–125 [PMID:10657008]

    PubMed  CAS  Google Scholar 

  65. Kingsnorth AN (1996) Platelet-activating factor. Scand J Gastroenterol 31[Suppl 219]:28–31 [PMID:8865468]

    CAS  Google Scholar 

  66. Wang H, Tan X, Chang H, Gonzalez-Grussi F, Daniel G (1997) Regulation of platelet-activating factor receptor gene expression in vivo by endotoxin, platelet-activating factor and endogenous tumour necrosis factor. Biochem J 322:603–608 [PMID:9065783]

    PubMed  CAS  Google Scholar 

  67. Roudebush WE, Wild MD, Maguire EH (2000) Expression of the platelet-activating factor receptor in human spermatozoa: differences in messenger ribonucleic acid content and protein distribution between normal and abnormal spermatozoa. Fertil Steril 73:967–971 [PMID:10785222]

    PubMed  CAS  Google Scholar 

  68. Reinhardt JC, Cui XY, Roudebush WE (1999) Immunofluorescent evidence of the platelet-activating factor receptor on human spermatozoa. Fertil Steril 71:941–942 [PMID:10231061]

    PubMed  CAS  Google Scholar 

  69. Sandoval D, Gukovskaya A, Reavey P, Gukovsky S, Sisk A, Braquet P, Pandol SJ, Poucell-Hatton S (1996) The role of neutrophils and platelet activating factor in mediating experimental pancreatitis. Gastroenterology 114:1081–1091 [PMID:8831604]

    Google Scholar 

  70. Ruo Q, Zhang SD (2000) Significance of systemic inflammatory reaction in pathogenesis of acute pancreatitis (in Chinese). Chin J Hepatobiliary Surg 6:76–77

    Google Scholar 

  71. Ji ZH, Wang BM, Li SH, Tang Y, Ding TK, Ma YG (1997) The role of platelet activating factor in pathogenesis of acute pancreatitis in dogs. Zhonghua Waike Zazhi 35:108–110 [PMID:10374489]

    PubMed  CAS  Google Scholar 

  72. Mckay CJ, Curran F, Sharples C, Baxter JN, Imrie CW (1997) Prospective placebo-controlled randomized trial of lexipafant in predicted severe acute pancreatitis. Br Surg 84:1239–1243 [PMID:9313702]

    CAS  Google Scholar 

  73. Li YY, Gao ZF (2001) Acute pancreatitis and nuclear factor kappa B (in Chinese). World Chin J Digestol 9:420–421

    Google Scholar 

  74. Suk K, Yeou Kim S, Kim H (2001) Regulation of IL-8 production by IFN gamma and PGE2 in mouse microglial cells: involvement of NF-κB pathway in the regulatory processes. Immunol Lett 77:79–85 [PMID:11377701]

    PubMed  CAS  Google Scholar 

  75. Izumi T, Saito Y, Kishimoto I, Harada M, Kuwahara K, Hamanaka I, Takahashi N, Kawakami R, Li Y, Takemura G, Fujiwara H, Garbers DL, Mochizuki S, Nakao K (2001) Blockade of the natriuretic peptide receptor guanylyl cyclase-A inhibits NF-kappaB activation and alleviates myocardial ischemia/reperfusion injury. J Clin Invest 108:203–213 [PMID:11457873]

    PubMed  CAS  Google Scholar 

  76. Antonelli A, Bianchi M, Crinelli R, Gentilini L, Magnani M (2001) Modulation of ICAM-1 expression in ECV304 cells by macrophage-released cytokines. Blood Cell Mol Dis 27:978–991 [PMID:11831864]

    CAS  Google Scholar 

  77. Ginis I, Jaiswal R, Klimanis D, Liu J, Greenspon J, Hallenbeck JM (2002) TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J Cereb Blood Flow Metab 22:142–152 [PMID:11823712]

    PubMed  CAS  Google Scholar 

  78. Wright G, Singh IS, Hasday JD, Farrance IK, Hall G, Gross AS, Roger TB (2002) Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. Am J Physiol Heart Circ Physiol 282:872–879 [PMID:11834481]

    Google Scholar 

  79. Lakshminarayanan V, Lewallen M, Frangogiannis NG, Evans AJ, Wedin KE, Michael LH, Entman ML (2001) Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia. Am J Pathol 159:1301–1311 [PMID:11583958]

    PubMed  CAS  Google Scholar 

  80. Moine P, McIntyre R, Schwartz MD, Kaneko D, Shenkar R, LeTulzo Y, Moore EE, Abraham E (2000) NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 13:85–91 [PMID:10670837]

    PubMed  CAS  Google Scholar 

  81. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314 [PMID:11499717]

    PubMed  CAS  Google Scholar 

  82. Omoya T, Shimizu I, Zhou Y, Okamura Y, Inoue H, Lu G, Itonaga M, Honda H, Nomura M, Ito S (2001) Effects of idoxifene and estradiol on NF-kappaB activation in cultured rat hepatocytes undergoing oxidative stress. Liver 21:183–191 [PMID:11422781]

    PubMed  CAS  Google Scholar 

  83. Shames BD, Barton HH, Raznikov LL, Cairns CB, Banerjee A, Harken AH, Meng X (2002) Ischemia alone is sufficient to induce TNF-alpha mRNA and peptide in the myocardium. Shock 17:114–119 [PMID:11837786]

    PubMed  Google Scholar 

  84. Wang Z, Castresana MR, Detmer K, Newman WH (2002) An IkappaB-alpha mutant inhibits cytokine gene expression and proliferation in human vascular smooth muscle cells. J Surg Res 102:198–206 [PMID:11796019]

    PubMed  CAS  Google Scholar 

  85. Theuer J, Dechend R, Muller DN, Park JK, Fiebeler A, Barta P, Ganten D, Haller H, Dietz R, Luft FC (2002) Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats. BMC Cardiovasc Disord 2:3 [PMID:11835691]

    PubMed  Google Scholar 

  86. Satoh A, Shimosegawa T, Fujita M (1999) Inhibition of nuclear factor-kB activation improves the survival of rats with taurocholate pancreatitis. Gut 44:253–258 [PMID:9895386]

    Article  PubMed  CAS  Google Scholar 

  87. Roebuck KA, Finnegan A (1999) Regulation of intercellular adhesion molecule-1(CD54) gene expression. J Leukoc Biol 66:876–888 [PMID:10614768]

    PubMed  CAS  Google Scholar 

  88. Windsor JA, Fearon KCH, Ross JA, Barclay GR, Smyth E, Poxton I (1993) Role of serum endotoxin and antiendotoxin core antibody levels in predicting the development of multiple organ failure in acute pancreatitis. Br J Surg 80:1042–1046 [PMID:8402063]

    PubMed  CAS  Google Scholar 

  89. Dun WH, Yan HM, Li CF, Wu YJ, Zhang X (1998) Discussion on renal dysfunction mechanism during acute necrotizing pancreatitis (in Chinese). Shanxi Med J 27:22–23

    Google Scholar 

  90. Scott P, Bruce C, Schofield D, Shiel N, Braganza JM, McCloy RF (1993) Vitamin C status in patient with acute pancreatitis. Br J Surg 80:750–754 [PMID:8330166]

    PubMed  CAS  Google Scholar 

  91. Luo J, Ye DC (1995) Changes in hepatic and renal ultrastructures of acute pancreatitis rat and their relations with oxygen free radical. Chin J Exp Surg 3:133–134

    Google Scholar 

  92. Werner J, Revera J, Castille CF, Lewandrowski K, Adrie C, Rattner DW, Warshaw AL (1997) Differing roles of nitric oxide in the pathogenesis of acute edematous versus necrotizing pancreatitis. Surgery 121:23–30 [PMID:9001547]

    PubMed  CAS  Google Scholar 

  93. Molero X, Guarner F, Salas A, Mourelle M, Puig V, Malagelada JR (1995) Nitric oxide modulates pancreatic basal secretion and response to cerulein in the rat: effects in acute pancreatic. Gastroenterology 108:1855–1862 [PMID:7539387]

    PubMed  CAS  Google Scholar 

  94. Tome LA, de Castro I, Campos SB, Seguro AC (1999) Beneficial and harmful effects of l-arginine on renal ischaemia. Nephrol Dial Transplant 14:1139–1145 [PMID:10344352]

    PubMed  CAS  Google Scholar 

  95. Lieberthal W (1998) Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response. Curr Opin Nephrol Hypertens 7:289–295 [PMID:9617560]

    PubMed  CAS  Google Scholar 

  96. Plusczyk T, Bersal B, Westerman S, Menger M, Feifel G (1999) ET-1 induces pancreatitis like microvascular deterioration and acinar cell injury. J Surg Res 85:301–310 [PMID:10423333]

    PubMed  CAS  Google Scholar 

  97. Cheng GZ, Zhang JX, Li L, Qu JG, Wang XQ (2002) Dynamic changes of renal injury and renal microcirculation in acute necrotizing pancreatitis rat (in Chinese). J Hepatobiliary Surg 4:310–312

    Google Scholar 

  98. Yan YG, Ai ZL, Liu ZS, Xu G (2000) Protective effect of angelica injection on acute hemorrhagic necrotizing pancreatitis complicated with renal injury (in Chinese). Chin J Gen Surg 9:228–230

    Google Scholar 

  99. Geestein RJ, Krakoff LR, Felton K (1987) Activation of the renin system in acute pancreatitis. Am J Med 82:401–404 [PMID:3548344]

    Google Scholar 

  100. Nishiwaki H, Ko I, Hiura A, Hass, Satake K, Sowa M (1993) Renal micro circulation in experimental acute pancreatitis of dogs. Ren Fail 15:27–31 [PMID:8441833]

    PubMed  CAS  Google Scholar 

  101. Hietaranta A, Kemppainen E, Puolakkainen P, Sainio V, Haapiainen R, Peuravuori H, Kivilaakso E, Neevalainen T (1999) Extracellular phospholipase A2 in relation to systemic inflammatory response syndrom(SIRS) and systemic complications in severe acute pancreatitis. Pancreas 18:385–391 [PMID:10231844]

    PubMed  CAS  Google Scholar 

  102. Yin BB, Cai R, Zhang YL (2002) Renal dysfunction of severe acute pancreatitis (in Chinese). Chin J Prac Surg 22:622

    Google Scholar 

  103. Marshall JB (1993) Acute pancreatitis. A review with an emphasis on new developments. Arch Intern Med 153:1185–1198 [PMID:8494472]

    PubMed  CAS  Google Scholar 

  104. Liang YF, Fu HF (2004) Function of hemodialysis in treating severe acute pancreatitis (SAP) complicated with acute renal failure (ARF) (in Chinese). Guangdong Med J 25:686–687

    Google Scholar 

  105. Miller MJ, Correa P (1998) Carcinogenesis, apoptosis and cell proliferation. Br Med Bull 54:151–162 [PMID:9604439]

    PubMed  Google Scholar 

  106. Kaiser AM, Saluja AK, Sengupta A, Saluja M, Steer ML (1995) Relationship between severity, necrosis, and apoptosis in five models of experimental acute pancreatitis. Am J Physiol 269:1295–1304 [PMID:7491921]

    Google Scholar 

  107. Fu K, Sarras MP, Delisle RC, Andrews GK (1996) Regulation of mouse pancreatitis-associated protein-I gene expression during caerulein-induced acute pancreatitis. Digestion 57:333–340 [PMID:8886577]

    Article  PubMed  CAS  Google Scholar 

  108. Fink GW, Norman JG (1996) Intrapancreatic interleukin-1 beta gene expression by specific leukocyte populations during acute pancreatitis. J Surg Res 63:369–373 [PMID:8661228]

    PubMed  CAS  Google Scholar 

  109. Norman JG, Fink GW, Franz MG (1995) Acute pancreatitis induces intra-pancreatic tumor necrosis factor gene expression. Arch Surg 130:966–970 [PMID:7661681]

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the technological foundation project of Traditional Chinese Medicine Science of Zhejiang province (No. 2003C130; NO.2004C142), foundation project for medical science and technology of Zhejiang province (No. 2003B134), grave foundation project for technological and development of Hangzhou (No. 2003123B19), intensive foundation project for technology of Hangzhou (NO.2004Z006), foundation project for medical science and technology of Hangzhou (No.2003A004) and foundation project for technology of Hangzhou (No. 2005224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X.P., Wang, L. & Zhou, Y.F. The Pathogenic Mechanism of Severe Acute Pancreatitis Complicated with Renal Injury: A Review of Current Knowledge. Dig Dis Sci 53, 297–306 (2008). https://doi.org/10.1007/s10620-007-9866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-9866-5

Keywords

Navigation