Skip to main content

Advertisement

Log in

Estrogen-Induced Proliferation in Cultured Hepatocytes Involves Cyclin D1, P21CIP1 and P27KIP1

  • Liver
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The purpose of this study was to establish if estrogen-induced hepatocyte proliferation in vitro involves the cell cycle regulators cyclin D1, p21Cip1, and p27Kip1. Male rat hepatocytes were cultured in presence of 17-β -estradiol (E2) ± ICI-182780, a pure estrogen antagonist, and [3H]-thymidine, as required. DNA synthesis as well as p21Cip1, p27Kip1, and cyclin D1mRNA and protein levels were evaluated at different times (12, 24, 36, and 48 hours) of incubation. E2-increased DNA synthesis was correlated with cyclin D1 and p21Cip1 (mRNA and protein) variations that were reversed by the addition of ICI-182780. p27Kip1protein levels progressively increased regardless of the presence of E2 or ICI-182780. Our data confirm that estrogens’ stimulatory effect is related to their ability to increase cyclin D1 levels. The increase of p21Cip1 is probably related to the reentry of hepatocytes in the quiescent state. p27Kip1protein is not able to arrest hepatocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henderson BE, Ross RK, Pike MC: Toward the primary prevention of cancer. Science 254:1131–1138, 1991

    CAS  PubMed  Google Scholar 

  2. Yager JD, Liehr JG: Molecular mechanisms of estrogen carcinogenesis. Annu Rev Pharmacol Toxicol 36:203–232, 1996

    Article  CAS  PubMed  Google Scholar 

  3. Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A: The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 20:501–534, 1999

    Article  CAS  PubMed  Google Scholar 

  4. Francavilla A, di Leo A, Eagon PK, et al.: Regenerating rat liver: correlations between estrogen receptor localization and deoxyribonucleic acid synthesis. Gastroenterology 86:552–557, 1984

    CAS  PubMed  Google Scholar 

  5. Francavilla A, Eagon PK, DiLeo A, et al.: Sex hormone-related functions in regenerating male rat liver. Gastroenterology 91:1263–1270, 1986

    CAS  PubMed  Google Scholar 

  6. Francavilla A, Polimeno L, DiLeo A, et al.: The effect of estrogen and tamoxifen on hepatocyte proliferation in vivo and in vitro. Hepatology 9:614–620, 1989

    CAS  PubMed  Google Scholar 

  7. Fisher B, Gunduz N, Saffer EA, Zheng S: Relation of estrogen and its receptor to rat liver growth and regeneration. Cancer Res 44:2410–2315, 1984

    CAS  PubMed  Google Scholar 

  8. Wanless IR, Medline A: Role of estrogens as promoters of hepatic neoplasia. Lab Invest 46:313–320, 1982

    CAS  PubMed  Google Scholar 

  9. Villa E, Camellini L, Dugani A, et al.: Variant estrogen receptor messenger RNA species detected in human primary hepatocellular carcinoma. Cancer Res 55:498–500, 1995

    CAS  PubMed  Google Scholar 

  10. Villa E, Colantoni A, Grottola A, et al.: Variant estrogen receptors and their role in liver disease. Mol Cell Endocrinol 193:65–69, 2002

    CAS  PubMed  Google Scholar 

  11. Pibiri M, Ledda-Columbano GM, Cossu C, et al.: Cyclin D1 is an early target in hepatocyte proliferation induced by thyroid hormone (T3). FASEB J 15:1006–1013, 2001

    Article  CAS  PubMed  Google Scholar 

  12. Loyer P, Cariou S, Glaise D, Bilodeau M, Baffet G, Guguen-Guillouzo C: Growth factor dependence of progression through G1 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-late G1. J Biol Chem 271:11484–11492, 1996

    CAS  PubMed  Google Scholar 

  13. Nelsen CJ, Rickheim DG, Timchenko NA, Stanley MW, Albrecht JH: Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo. Cancer Res 61:8564–8568, 2001

    CAS  PubMed  Google Scholar 

  14. Albrecht JH, Meyer AH, Hu MY: Regulation of cyclin-dependent kinase inhibitor p21(WAF1/Cip1/Sdi1) gene expression in hepatic regeneration. Hepatology 25:557–563, 1997

    Article  CAS  PubMed  Google Scholar 

  15. Kwon YH, Jovanovic A, Serfas MS, Kiyokawa H, Tyner AL: P21 functions to maintain quiescence of p27-deficient hepatocytes. J Biol Chem 277:41417–41422, 2002

    CAS  PubMed  Google Scholar 

  16. Wu H, Wade M, Krall L, Grisham J, Xiong Y, Van Dyke T: Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev 10:245–260, 1996

    CAS  PubMed  Google Scholar 

  17. Ilyin GP, Glaise D, Gilot D, Baffet G, Guguen-Guillouzo C: Regulation and role of p21 and p27 cyclin-dependent kinase inhibitors during hepatocyte differentiation and growth. Am J Physiol Gastrointest Liver Physiol 285:G115–127, 2003

    CAS  PubMed  Google Scholar 

  18. Crary GS, Albrecht JH: Expression of cyclin-dependent kinase inhibitor p21 in human liver. Hepatology 28:738–743, 1998

    Article  CAS  PubMed  Google Scholar 

  19. Poon RY, Toyoshima H, Hunter T: Redistribution of the CDK inhibitor p27 between different cyclin. CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 6:1197–1213, 1995

    CAS  PubMed  Google Scholar 

  20. Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ: Repression of p27kip1 synthesis by platelet-derived growth factor in BALB/c 3T3 cells. Mol Cell Biol 16:4327–4336, 1996

    CAS  PubMed  Google Scholar 

  21. Fero ML, Rivkin M, Tasch M, et al.: A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744, 1996

    Article  CAS  PubMed  Google Scholar 

  22. Kiyokawa H, Kineman RD, Manova-Todorova KO, et al.: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85:721–732, 1996

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama K, Ishida N, Shirane M, et al.: Mice lacking p27 (Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720, 1996

    Article  CAS  PubMed  Google Scholar 

  24. Karnezis AN, Dorokhov M, Grompe M, Zhu L: Loss of p27(Kip1) enhances the transplantation efficiency of hepatocytes transferred into diseased livers. J Clin Invest 108:383–390, 2001

    Article  CAS  PubMed  Google Scholar 

  25. McIntyre M, Desdouets C, Senamaud-Beaufort C, Laurent-Winter C, Lamas E, Brechot C: Differential expression of the cyclin-dependent kinase inhibitor P27 in primary hepatocytes in early-mid G1 and G1/S transitions. Oncogene 18:4577–4585, 1999

    Article  CAS  PubMed  Google Scholar 

  26. Albrecht JH, Poon RY, Ahonen CL, Rieland BM, Deng C, Crary GS: Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver. Oncogene 16:2141–2150, 1998

    Article  CAS  PubMed  Google Scholar 

  27. Yang C, Sun M, Ilic Z, Friedrich TD, Sell S: Reduced expression of p27 Kip1 and increased hepatocyte proliferation in p53-deficient mice. Mol Carcinog 36:15–22, 2003

    Article  CAS  PubMed  Google Scholar 

  28. Jirtle RL, Michalopoulos G, McLain JR, Crowley J: Transplantation system for determining the clonogenic survival of parenchymal hepatocytes exposed to ionizing radiation. Cancer Res 41:3512–3518, 1981

    CAS  PubMed  Google Scholar 

  29. Seglen PO: Preparation of isolated rat liver cells. Methods Cell Biol 13:29–43, 1976

    CAS  PubMed  Google Scholar 

  30. Barone M, Francavilla A, Polimeno L, et al.: Modulation of rat hepatocyte proliferation by bile salts: in vitro and in vivo studies. Hepatology 23:1159–1166, 1996

    CAS  PubMed  Google Scholar 

  31. Setaro F, Morley CG: A modified fluorometric method for the determination of microgram quantities of DNA from cell or tissue cultures. Anal Biochem 71:313–317, 1976

    Article  CAS  PubMed  Google Scholar 

  32. Carroll JS, Prall OW, Musgrove EA, Sutherland RL: A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. J Biol Chem 275:38221–38229, 2000

    Article  CAS  PubMed  Google Scholar 

  33. Himenoy, Fukuda Y, Hatanaka M, Imura H: Expression of oncogenes during rat chemical hepatotumourigenesis promoted by estrogen. Jpn J Cancer Res 80:737–742, 1989

    Google Scholar 

  34. Lee CH, Edwards AM: Stimulation of DNA synthesis and c-fos mRNA expression in primary rat hepatocytes by estrogens. Carcinogenesis 22:1473–1481, 2001

    Article  CAS  PubMed  Google Scholar 

  35. Persico E, Scalona M, Cicatiello L, Sica V, Bresciani F, Weisz A: Activation of ‘immediate-early’ genes by estrogen is not sufficient to achieve stimulation of DNA synthesis in rat uterus. Biochem Biophys Res Commun 171:287–292, 1990

    Article  CAS  PubMed  Google Scholar 

  36. Ledda-Columbano GM, Pibiti M, Concas D, Cossu C, Tripodi M, Colymbano A: Loss of cyclin D1 does not inhibit the proliferative response of mouse liver to mitogenic stimuli. Hepatology 36:1098–1105, 2002

    Article  CAS  PubMed  Google Scholar 

  37. Marino M, Acconcia F, Bresciani F, Weisz A, Trentalance A: Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells. Mol Biol Cell 13:3720–3729, 2002

    Article  CAS  PubMed  Google Scholar 

  38. Barone M, Moretti A, Ladisa R, et al.: Cyclin-dependent kinase inhibitor (CDKI) expression in quiescent and proliferating rat hepatocytes. Dig Liver Dis 32:A67, 2000

    Article  Google Scholar 

  39. Albrecht JH, Hansen LK: Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes. Cell Growth Differ 10:397–404, 1999

    CAS  PubMed  Google Scholar 

  40. Borriello A, Pietra VD, Criscuolo M, et al.: p27Kip1 accumulation is associated with retinoic-induced neuroblastoma differentiation: evidence of a decreased proteasome-dependent degradation. Oncogene 19:51–60, 2000

    Article  CAS  PubMed  Google Scholar 

  41. Bashir T, Pagano M: Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 88:101–144, 2003

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Iolascon PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, M., Ladisa, R., Leo, A.D. et al. Estrogen-Induced Proliferation in Cultured Hepatocytes Involves Cyclin D1, P21CIP1 and P27KIP1. Dig Dis Sci 51, 580–586 (2006). https://doi.org/10.1007/s10620-006-3173-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-3173-4

Key Words

Navigation