Skip to main content
Log in

On mining latent treatment patterns from electronic medical records

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Clinical pathway (CP) analysis plays an important role in health-care management in ensuring specialized, standardized, normalized and sophisticated therapy procedures for individual patients. Recently, with the rapid development of hospital information systems, a large volume of electronic medical records (EMRs) has been produced, which provides a comprehensive source for CP analysis. In this paper, we are concerned with the problem of utilizing the heterogeneous EMRs to assist CP analysis and improvement. More specifically, we develop a probabilistic topic model to link patient features and treatment behaviors together to mine treatment patterns hidden in EMRs. Discovered treatment patterns, as actionable knowledge representing the best practice for most patients in most time of their treatment processes, form the backbone of CPs, and can be exploited to help physicians better understand their specialty and learn from previous experiences for CP analysis and improvement. Experimental results on a real collection of 985 EMRs collected from a Chinese hospital show that the proposed approach can effectively identify meaningful treatment patterns from EMRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that clinical events could be characterized by various properties, e.g., an event has an occurring time stamp, it corresponds to a treatment activity type, and has associated costs, etc. We do not impose a specific set of properties, however, given the focus of this paper, we assume that the activity type and occurring time stamp of the event are present.

  2. Note that CPs, as standardized inpatient treatment processes, are executed in specific time periods from admission to discharge. During the execution of CPs, treatments of a pathway should be performed in specific time instants. Taking the unstable angina pathway as an example, typical treatment activities, such as lab test, ECG examination, etc., have to be performed in the first days after admission, and PCI surgery have to be performed subsequently, etc. Thus, the occurring time stamps are partially determined by the treatment activities.

  3. We used a well-known toolkit, i.e., MEKA (http://meka.sourceforge.net/), for the task of multi-label classification.

  4. Note that in clinical settings, the given treatments are biased. Even for the same patient, different physicians may have different opinions on patient conditions so as to give different treatment interventions.

References

  • Agrawal R, Gunopulos D, Leymann F (1998) Mining process models from workflow logs. In HJ Schek, F Saltor, I Ramos, G Alonso (eds) Sixth international conference on extending database technology. Springer-Verlag, London, pp 469–483

  • Antman EM, Cohen M, Bernink PM et al (2000) The TIMI risk score for Unstable Angina/Non-ST elevation MI: a method for prognostication and therapeutic decision making. J Am Med Assoc 284(7):835–842

    Article  Google Scholar 

  • Blei DM, Ng AY, Jordan MI (March 2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022

  • Bouarfa L, Dankelman J (2012) Workflow mining and outlier detection from clinical activity logs. J Biomed Inform 45(6):1185–1190

    Article  Google Scholar 

  • Cheah J (2000) Development and implementation of a clinical pathway programme in an acute care general hospital in singapore. Int J Qual Health Care 12:403–412

    Article  Google Scholar 

  • Cook JE, Wolf AL (1998) Discovering models of software processes from event-based data. ACM Transactions on Software Engineering and Methodology 7(3):215–249

    Article  Google Scholar 

  • Dong W, Huang Z, Ji L, Li H (2014) A genetic fuzzy system for unstable angina risk assessment. BMC Med Inform Decis Mak 14:12

    Article  Google Scholar 

  • Dunn AG, Ong MS, Westbrook JI, Magrabi F, Coiera E, Wobcke W (2011) A simulation framework for mapping risks in clinical processes: the case of in-patient transfers. J Am Med Inform Assoc 18(3):259–266

    Article  Google Scholar 

  • Dy SM, Garg P, Nyberg D, Dawson PB, Pronovost PJ, Morlock L, Rubin H, Wu AW (2005) Critical pathway effectiveness: assessing the impact of patient, hospital care, and pathway characteristics using qualitative comparative analysis. Health Serv Res 40(2):499–516

    Article  Google Scholar 

  • Elson RB, Faughnan JG, Connelly DP (1997) An industrial process view of information delivery to support clinical decision making: implications for systems design and process measures. J Am Med Inform Assoc 4(4):266–278

    Article  Google Scholar 

  • Ghattas J, Peleg M, Soffer P, Denekamp Y (2010) Learning the context of a clinical process. In: Stefanie R-M, Shazia S, Leymann F (eds) Business process management workshops, vol 43. Lecture Notes in Business Information Processing. Springer, Berlin, pp 545–556

  • Gooch P, Roudsari A (2011) Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems. J Am Med Inform Assoc 18(6):738–748

    Article  Google Scholar 

  • Griffiths TL (2004) Finding scientific topics. Proc Natl Acad Sci USA 101:5228–5235

    Article  Google Scholar 

  • Huang Z, Lu X, Gan C, Duan H (2011) Variation prediction in clinical processes. In: Peleg M, Lavrac N, Combi C (eds) Artificial intelligence in medicine, vol 6747., Lecture notes in Computer ScienceSpringer, Berlin/Heidelberg, pp 286–295

    Chapter  Google Scholar 

  • Huang Z, Lu X, Duan H (2012) Using recommendation to support adaptive clinical pathways. J Med Syst 36(3):1849–1860

    Article  Google Scholar 

  • Huang Z, Lu X, Duan H (2012) On mining clinical pathway patterns from medical behaviors. Artif Intell Med 56(1):35–50

    Article  Google Scholar 

  • Huang Z, Juarez JM, Duan H, Li H (2013) Length of stay prediction for clinical treatment process using temporal similarity. Expert Syst Appl 40(16):6330–6339

    Article  Google Scholar 

  • Huang Z, Lu X, Duan H (2013) Latent treatment topic discovery for clinical pathways. J Med Syst 37(2):1–10

    Article  Google Scholar 

  • Huang Z, Lu X, Duan H, Fan W (2013) Summarizing clinical pathways from event logs. J Biomed Inform 46(1):111–127

    Article  Google Scholar 

  • Huang Z, Dong W, Duan H, Li H (2014) Similarity measure between patient traces for clinical pathway analysis: problem, method, and applications. IEEE J Biomed Health Inform 18(1):4–14

    Article  Google Scholar 

  • Huang Z, Dong W, Ji L, Gan C, Lu X, Duan H (2014) Discovery of clinical pathway patterns from event logs using probabilistic topic models. J Biomed Inform 47:39–57

    Article  Google Scholar 

  • Huang Z, Lu X, Duan H (2012) Anomaly detection in clinical processes. In AMIA Annu Symp Proc, pp 370–379

  • Hunter B, Segrott J (2008) Re-mappling client journeys and professional identities: a review of the literature on clinical pathways. Int J Nurs Stud 45:608–625

    Article  Google Scholar 

  • Iwata T, Sawada H (2013) Topic model for analyzing purchase data with price information. Data Min Knowl Discov 26(3):559–573

    Article  MATH  Google Scholar 

  • Lakshmanan GT, Rozsnyai S, Wang F (2013) Investigating clinical care pathways correlated with outcomes. In: Daniel F, Wang J, Weber B (eds) Business process management, vol 8094. Lecture Notes in Computer Science.Springer, Berlin, pp 323–338

  • Lang M, Burkle TB, Laumann S, Prokosch HU (2008) Process mining for clinical workflows: challenges and current limitations. In SK Andersen, GO Klein, S Schulz, J Aarts (eds) Proceedings of MIE2008 the XXIst international congress of the European federation for medical informatics, pp 229–234

  • Lenz R, Blaser R, Beyer M, Heger O, Biber C et al (2007) IT support for clinical pathways-lessons learned. Int J Med Inform 76(3):S397–S402

    Article  Google Scholar 

  • Lenz R, Reichert M (2007) IT support for healthcare processes-premises, challenges, perspectives. Data Knowl Eng 61(1):39–58

    Article  Google Scholar 

  • Lin F, Chen S, Pan S, Chen Y (2001) Mining time dependency patterns in clinical pathways. Int J Med Inform 62(1):11–25

    Article  Google Scholar 

  • Loeb M, Carusone SC, Goeree R, Walter SD, Brazil K, Krueger P et al (2006) Effect of a clinical pathway to reduce hospitalizations in nursing home residents with pneumonia. J Am Med Assoc 295: 2503–2510

    Article  Google Scholar 

  • Lu X, Huang Z, Duan H (2012) Supporting adaptive clinical treatment processes through recommendations. Comput Methods Programs Biomed 107(3):413–424

    Article  Google Scholar 

  • Mans R, Schonenberg H, Leonardi G, Panzarasa S, Cavallini A, Quaglini S (2008) Process mining techniques: an application to stroke care. Stud Health Technol Inform 136:573–578

    Google Scholar 

  • Peleg M, Mulyar N, van der Aalst WMP (2012) Pattern-based analysis of computer-interpretable guidelines: don’t forget the context. Artif Intell Med 54(1):73–74

    Article  Google Scholar 

  • Peleg M (2013) Computer-interpretable clinical guidelines: a methodological review. J Biomed Inform 46(4):744–763

    Article  Google Scholar 

  • Peleg M, Soffer P, Ghattas J (2008) Mining process execution and outcomes—position paper. In: Arthur H, Benatallah B, Paik H-Y (eds) Business process management workshops, vol 4928. Lecture Notes in Computer Science. Springer, Berlin, pp 395–400

  • Phung D, Adams B, Venkatesh S, Kumar M (2009) Unsupervised context detection using wireless signals. Pervasive Mobile Comput 5(6):714–733

    Article  Google Scholar 

  • Quaglini S, Stefanelli M, Lanzola G, Caporusso V, Panzarasa S (2001) Flexible guideline-based patient careflow systems. Artif Intell Med 22(1):65–80

    Article  Google Scholar 

  • Rebuge A, Ferreira DR (2012) Business process analysis in healthcare environments: a methodology based on process mining. Inform Syst 37(2):99–116

    Article  Google Scholar 

  • Renholm M, Leino-Kilpi H, Suominen T (2002) Critical pathways: a systematic review. J Nurs Adm 32(4):196–202

    Article  Google Scholar 

  • Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P (2004) The author-topic model for authors and documents. In 20th conference on uncertainty in artificial intelligence, pp 487–494

  • Rotter T, Kugler J, Koch R, Gothe H, Twork S, van Oostrum JM, Steyerberg EW (2008) A systematic review and meta-analysis of the effects of clinical pathways on length of stay, hospital costs and patient outcomes. BMC Health Serv Res 8:265

    Article  Google Scholar 

  • Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehous Min 3(3):1–13

    Article  Google Scholar 

  • Uzark K (2003) Clinical pathways for monitoring and advancing congenital heart disease care. Progr Pediatr Cardiol 18:131–139

    Article  Google Scholar 

  • Wakamiya S, Yamauchi K (2009) What are the standard functions of electronic clinical pathways? Int J Med Inform 78(8):543–550

    Article  Google Scholar 

  • Wang X, McCallum A, Wei X (2007) Topical n-grams: phrase and topic discovery, with an application to information retrieval. In IEEE international conference on data mining, pp 697–702

  • Wang F, Zhang P, Cao N, Hu J, Sorrentino R (2014) Exploring the associations between drug side-effects and therapeutic indications. J Biomed Inform. doi:10.1016/j.jbi.2014.03.014

  • Weiland DE (1997) Why use clinical pathways rather than practice guidelines? Am J Surg 174:592–595

    Article  Google Scholar 

  • 2012 Writing Committee Members, Jneid H, Anderson JL, Wright RS, Adams CD, Bridges CR, Casey DE, Ettinger SM, Fesmire FM, Ganiats TG, Lincoff AM, Peterson ED, Philippides GJ, Theroux P, Wenger NK, Zidar JP (2012) 2012 ACCF/AHA focused update of the guideline for the management of patients with Unstable Angina/Non-ST-Elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update). Circulation 126(7):875–910

  • Whye Teh Y, Jordan MI, Beal MJ, Blei DM (2004) Hierarchical Dirichlet processes. J Am Stat Assoc 101(476):1566–1581

    Article  Google Scholar 

  • Yao W, Kumar A (2013) Conflexflow: integrating flexible clinical pathways into clinical decision support systems using context and rules. Decis Support Syst 55(2):499–515

    Article  Google Scholar 

  • Zand DJ, Brown KM, Konecki UL, Campbell JK, Salehi V, Chamberlain JM (2008) Effectiveness of a clinical pathway for the emergency treatment of patients with inborn errors of metabolism. Pediatrics 122:1191–1195

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China under Grant No. 81101126, the National Hi-Tech R&D Plan of China under Grant No 2012AA02A601, and the Fundamental Research Funds for the Central Universities under Grant No 2014QNA5014. The authors would like to give special thanks to all experts who cooperated in the evaluation of the proposed method. The authors are especially thankful for the positive support received from the cooperative hospitals as well as to all medical staff involved. The authors would like to thank the anonymous reviewers for their constructive comments on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxing Huang.

Additional information

Responsible editors: Fei Wang, Gregor Stiglic, Ian Davidson and Zoran Obradovic.

Zhengxing Huang and Wei Dong contributed equally to this work.

Appendix

Appendix

In this appendix, we give the derivation of Eq. (11)

$$\begin{aligned}&P(\mathbf{f}, \mathbf{v}, \mathbf{a}, \mathbf{t}, \mathbf{z}|\alpha ,\beta , \gamma , \eta , \iota , \mathbf{g}, \mathbf{k}, \mathbf{x}, \mathbf{y})\nonumber \\&\quad = P(\mathbf{z}|\alpha ) P(\mathbf{f}|\mathbf{z},\eta ) P(\mathbf{v}|\mathbf{z}, \mathbf{f}, \iota , \mathbf{g}, \mathbf{k}, \mathbf{x}, \mathbf{y} ) P(\mathbf{a}|\mathbf{z},\beta ) P(\mathbf{t}|\mathbf{z},\mathbf{a},\gamma ) \end{aligned}$$
(27)

For \(P(\mathbf{z}|\alpha )\), we have

$$\begin{aligned} P(\mathbf{z}|\alpha )&= \int P(\mathbf{z}|\varTheta )P(\theta |\alpha ) d\varTheta \nonumber \\&= \int \prod _{d=1}^{D} \left( \prod _{i=1}^{N_d} P(z_{d,i}|\theta _d)P(\theta _d|\alpha )\right) d\varTheta \nonumber \\&= \int \prod _{d=1}^{D} \prod _{z=1}^Z \theta _{d,z}^{C_{d,z}} \prod _{d=1}^{D} \left( \frac{\varGamma (Z \alpha )}{\varGamma (\alpha )^Z} \prod _{z=1}^Z\theta _{d,z}^{\alpha - 1} \right) d\varTheta \nonumber \\&\propto \prod _{d=1}^{D} \frac{\prod _{z=1}^Z \varGamma (C_{d,z}+\alpha )}{\varGamma (\sum _{z=1}^Z (C_{d,z} + \alpha ))} \end{aligned}$$
(28)

For \(P(\mathbf{f}|\mathbf{z},\eta )\), we have

$$\begin{aligned} P(\mathbf{f}|\mathbf{z},\eta )&= \int P(\mathbf{f}|\varPsi ,\mathbf{z})P(\varPsi |\eta )d\varPsi \nonumber \\&= \int \prod _{d=1}^{D} \prod _{i=1}^{N_d^f} P(f|\psi _{z_{d_i}}) \prod _{z=1}^Z P(\psi _{z_{d_i}}|\eta )d\varPsi \nonumber \\&= \int \prod _{z=1}^Z \prod _{f=1}^{F} \psi _{z,f}^{C_{z,f}} \prod _{z=1}^Z \left( \frac{\varGamma ({F} \beta )}{\varGamma (\beta )^F}\prod _{f=1}^{F}\psi _{z,f}^{\beta -1}\right) d\varPsi \nonumber \\&\propto \prod _{z=1}^Z \frac{\prod _{f=1}^{F} \varGamma (C_{z,f}+\beta )}{\varGamma (\sum _{f=1}^{F}(C_{z,f}+\beta ))} \end{aligned}$$
(29)

For \(P(\mathbf{v}|\mathbf{z}, \mathbf{f}, \iota , \mathbf{g}, \mathbf{k}, \mathbf{x}, \mathbf{y} )\), we have

$$\begin{aligned}&P(\mathbf{v}|\mathbf{z}, \mathbf{f}, \iota , \mathbf{g}, \mathbf{k}, \mathbf{x}, \mathbf{y} )\nonumber \\&\quad = \int P(\mathbf{v}|\mathbf{z},\mathbf{f},\varDelta )P(\varDelta |\iota ) d\varDelta \prod _{z=1}^Z \prod _{f=1}^F P(V_{z,f}|\mathbf{g}, \mathbf{k}, \mathbf{x}, \mathbf{y})\nonumber \\&\quad = \left\{ \begin{array}{lll} \int \prod _{d=1}^{D} \prod _{i=1}^{N_d^f} P(v_i|\delta _{z,f}) \prod _{z=1}^Z \prod _{f=1}^{F}P(\delta _{z,f}|\iota )d\varDelta &{} : &{} f \,\hbox {is a categorical feature}\\ \prod _{z=1}^Z \prod _{f=1}^F \int \int \prod _{v\in \mathbf{v}_{z,f}} P(v|\mu _{z,f}, \lambda _{z,f}^{-1})&{}\\ P(\mu _{z,f}|g_f, (k_f \lambda _{z,f})^{-1}) P(\lambda _{z,f}|x_i, y_i) d\mu _{z,f} d\lambda _{z,f}&{}:&{} f \,\hbox {is a numerical feature} \end{array} \right. \nonumber \\&\quad = \left\{ \begin{array}{lll} \int \prod _{z=1}^Z \prod _{f=1}^{F} \big (\prod _{v=1}^{V_{z,f}} \delta _{z,f,v}^{C_{z,f,v}} \frac{\varGamma (\iota V_{z,f} )}{\varGamma (\iota )^{V_{z,f}}}\prod _{v=1}^{V_{z,f}}\delta _{z,f,v}^{\iota -1}\big )d\varDelta &{}:&{} f \,\hbox {is a categorical feature}\\ \prod _{z=1}^Z \prod _{f=1}^F (2\pi )^{-\frac{C_{z,f}}{2}} \frac{\varGamma (x_{z,f})}{\varGamma (x_f)}\frac{{y_{f}}^{x_f}}{{y_{z,f}}^{x_{z,f}}} (\frac{k_f}{k_{z,f}})^{\frac{1}{2}}&{}:&{} f \,\hbox {is a numerical feature} \end{array} \right. \nonumber \\&\quad \propto \left\{ \begin{array}{lll} \prod _{z=1}^Z \prod _{f=1}^{F} \frac{\prod _{v=1}^{V_{z,f}}\varGamma ( C_{z,f,v}+\iota )}{\varGamma (\sum _{v=1}^{V_{z,f}} (C_{z,f,v} + \iota ))} &{}:&{} f \,\hbox {is a categorical feature}\\ \prod _{z=1}^Z \prod _{f=1}^F (2\pi )^{-\frac{C_{z,f}}{2}} \frac{\varGamma (x_{z,f})}{\varGamma (x_f)}\frac{{y_{f}}^{x_f}}{{y_{z,f}}^{x_{z,f}}} (\frac{k_f}{k_{z,f}})^{\frac{1}{2}}&{}:&{} f \,\hbox {is a numerical feature} \end{array} \right. \end{aligned}$$
(30)

For \(P(\mathbf{a}|\mathbf{z},\beta )\), we have

$$\begin{aligned} P(\mathbf{a}|\mathbf{z},\beta )&= \int P(\mathbf{a}|\varPhi ,\mathbf{z})P(\varPhi |\beta )d\varPhi \nonumber \\&= \int \prod _{d=1}^{D} \prod _{i=1}^{N_d^e} P(e_i.a|\phi _{z_i}) \prod _{z=1}^Z P(\phi _z|\beta )d\varPhi \nonumber \\&= \int \prod _{z=1}^Z \prod _{a=1}^{A} \phi _{z,a}^{C_{z,a}} \prod _{z=1}^Z \left( \frac{\varGamma (A \beta )}{\varGamma (\beta )^A}\prod _{a=1}^{A}\phi _{z,a}^{\beta -1}\right) d\varPhi \nonumber \\&\propto \prod _{z=1}^Z \frac{\prod _{a=1}^{A} \varGamma (C_{z,a}+\beta )}{\varGamma (\sum _{a=1}^{A}(C_{z,a}+\beta ))} \end{aligned}$$
(31)

For \(P(\mathbf{t}|\mathbf{z},\mathbf{a},\gamma )\), we have:

$$\begin{aligned} P(\mathbf{t}|\mathbf{z},\mathbf{a},\gamma )&= \int P(\mathbf{t}|\mathbf{z},\mathbf{a},\varXi )P(\varXi |\gamma ) d\varXi \nonumber \\&= \int \prod _{d=1}^{D} \prod _{i=1}^{N_d^e} P(e_i.t|\xi _{z_i,e_i.a}) \prod _{z=1}^Z \prod _{a=1}^{A}P(\xi _{z,a}|\gamma )d\varXi \nonumber \\&= \int \prod _{z=1}^Z \prod _{a=1}^{A} \left( \prod _{t=1}^{T} \xi _{z,a,t}^{C_{z,a,t}} \frac{\varGamma (T\gamma )}{\varGamma (\gamma )^T}\prod _{t=1}^{T}\xi _{z,a,t}^{\gamma -1}\right) d\varXi \nonumber \\&\propto \prod _{z=1}^Z \prod _{a=1}^{A} \frac{\prod _{t=1}^{T}\varGamma ( C_{z,a,t}+\gamma )}{\varGamma (\sum _{t=1}^{T}(C_{z,a,t} + \gamma ))} \end{aligned}$$
(32)

Substituting Eqs. (28)–(32) into Eq. (27), and using the chain rule and \(\varGamma (\alpha ) \!=\! (\alpha -1)\varGamma (\alpha -1)\), we can obtain the conditional probability conveniently,

$$\begin{aligned}&P(z_{d,i} = z| \mathbf{f}, \mathbf{v}, \mathbf{a}, \mathbf{t},\mathbf{z}_{d}^{-i},\alpha , \beta , \gamma , \eta , \iota , \mathbf{g},\mathbf{k},\mathbf{x},\mathbf{y}) \nonumber \\&\quad = \left\{ \begin{array}{lll} \frac{P(z_{d,i}, f_{d,i}, v_{d,i}| \mathbf{f}_{d}^{-i}, \mathbf{v}_d^{-i}, \mathbf{z}_d^{-i}, \alpha , \eta , \iota , \mathbf{g},\mathbf{k},\mathbf{x},\mathbf{y})}{P(f_{d,i}, v_{d,i}| \mathbf{f}_{d}^{-i}, \mathbf{v}_d^{-i}, \mathbf{z}_d^{-i}, \alpha , \eta , \iota , \mathbf{g},\mathbf{k},\mathbf{x},\mathbf{y})} &{}:&{} i \,\hbox {is a patient feature} \\ \frac{P(z_{d, i}, p_{d,i}. a_{d, i}, t_{d, i}| \mathbf{a}_{d}^{-i}, \mathbf{t}_{d}^{-i}, \mathbf{z}_{d}^{-i}, \alpha , \beta , \gamma )}{P( a_{d, i}, t_{d, i}| \mathbf{a}_d^{-i}, \mathbf{t}_d^{-i}, \mathbf{z}_{d}^{-i}, \alpha , \beta , \gamma )} &{}:&{} i \,\text {is a clinical event}\end{array} \right. \nonumber \\&\quad \propto \left\{ \begin{array}{lll} \frac{P(\mathbf{z}, \mathbf{f}, \mathbf{v}|\alpha , \eta , \iota , \mathbf{g},\mathbf{k},\mathbf{x},\mathbf{y})}{P(\mathbf{z}_{d}^{-i}, \mathbf{f}_{d}^{-i}, \mathbf{v}_{d}^{-i}|\alpha , \eta , \iota , \mathbf{g},\mathbf{k},\mathbf{x},\mathbf{y})}&{}:&{} i \,\hbox {is a patient feature} \\ \frac{P(\mathbf{z}, \mathbf{a}, \mathbf{t}|\alpha , \beta , \gamma )}{P(\mathbf{z}_d^{-i}, \mathbf{a}_d^{-i}, \mathbf{t}_d^{-i}|\alpha , \beta , \gamma )} &{}:&{} i \,\text {is a clinical event} \end{array} \right. \nonumber \\&\quad \propto \frac{C_{z,d}^{-i} + \alpha }{C_{d,*}^{-i}+ \alpha Z}\cdot \left\{ \begin{array}{lll} \frac{C_{z,f_i}^{-i} + \eta }{C_{z,*}^{-i} + \eta F} \cdot \left\{ \begin{array}{lll} \frac{C_{z,f_i,v_i}^{-i} + \iota }{C_{z,f_i,*}^{-i} + V_{z,f_i} \iota } &{}:&{} f_i \,\hbox {is a categorical feature}\\ \frac{\varGamma (x_{z,f_i})}{\varGamma (x_{z,f_i}^{-i})} \cdot \frac{{y_{z,f_i}^{-i}}^{x_{z,f_i}^{-i}}}{{y_{z,f_i}}^{x_{z,f_i}}} \cdot (\frac{k_{z,f_i}^{-i}}{k_{z,f_i}})^{\frac{1}{2}}&{}:&{} f_{i} \,\hbox {is a numerical feature} \end{array} \right. &{}:&{} i \,\hbox {is a patient feature} \\ \frac{C_{z,a}^{-i} + \beta }{C_{z,*}^{-i} + A \beta } \cdot \frac{C_{z,a,t}^{-i} + \gamma }{C_{z,a,*}^{-i} + T \gamma } &{}:&{} i \,\text {is a clinical event} \end{array} \right. \nonumber \\ \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Dong, W., Bath, P. et al. On mining latent treatment patterns from electronic medical records. Data Min Knowl Disc 29, 914–949 (2015). https://doi.org/10.1007/s10618-014-0381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-014-0381-y

Keywords

Navigation