Skip to main content

Advertisement

Log in

Gene delivery in adherent and suspension cells using the combined physical methods

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Physical methods are widely utilized to deliver nucleic acids into cells such as electro-transfection or heat shock. An efficient gene electro-transfection requires the best conditions including voltage, the pulse length or number, buffer, incubation time and DNA form. In this study, the delivery of pEGFP-N1 vector into two adherent cell lines (HEK-293 T and COS-7) with the same origin (epithelial cells), and also mouse bone marrow-derived dendritic cells (DCs) was evaluated using electroporation under different conditions alone and along with heat treatment. Our data showed that the highest green fluorescent protein (GFP) expression in HEK-293 T and COS-7 cells was observed in serum-free RPMI cell culture medium as electroporation buffer, voltage (200 V), the pulse number (2), the pulse length (15 ms), the circular form of DNA, and 48 h after electro-transfection. In addition, the highest GFP expression in DCs was detected in serum-free RPMI, voltage (300 V), the pulse number (1), the pulse length (5 ms), and 48 h after electro-transfection. The use of sucrose as electroporation buffer, the pulse number (2), and the pulse length (25 ms) led to further cytotoxicity and lower transfection in HEK293T and COS-7 cells than other conditions. Moreover, the high voltage (700 V) increased the cell cytotoxicity, and decreased electro-transfection efficiency in DCs. On the other hand, the best conditions of electroporation along with heat treatment could significantly augment the transfection efficiency in all the cells. These data will be useful for gene delivery in other cells with the same properties using physical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available in the manuscript.

References

  • Artusio E, Hathaway B, Stanson J, Whiteside TL (2006) Transfection of human monocyte-derived dendritic cells with native tumor DNA induces antigen-specific T-cell responses in vitro. Cancer Biol Ther 5:1624–1631

    Article  CAS  PubMed  Google Scholar 

  • Asano M, Iwakura Y, Kawade Y (1985) SV40 vector with early gene replacement efficient in transducing exogenous DNA into mammalian cells. Nucleic Acids Res 13:8573–8586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhassani A, Khavari A, Orafa Z (2014) Electroporation-advantages and drawbacks for delivery of drug, gene and vaccine. Application of nanotechnology in drug delivery. InTech, London, pp 369–397

    Google Scholar 

  • Bolhassani A, Shahbazi S, Agi E, Haghighipour N, Hadi A, Asgari F (2019) Modified DCs and MSCs with HPV E7 antigen and small Hsps: which one is the most potent strategy for eradication of tumors? Mol Immunol 108:102–110

    Article  CAS  PubMed  Google Scholar 

  • Carlo DD, Lee LP (2006) Dynamic single-cell analysis for quantitative biology. Anal Chem 78:7918–7925

    Article  PubMed  Google Scholar 

  • Cemazar M, Sersa G (2007) Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 9:554–562

    CAS  PubMed  Google Scholar 

  • Choi YJ, Hur SY, Kim TJ, Hong SR, Lee JK, Cho CH, Park KS, Woo JW, Sung YC, Suh YS, Park JS (2020) A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin Cancer Res 26:1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Chu G, Hayakawa H, Berg P (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res 15:1311–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn ZA, Steinman RM (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. J Exp Med 137:1142–1162

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Agostino M, Crespi A, Polishchuk E, Generoso S, Martire G, Colombo SF, Bonatti S (2014) ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum. J Membr Biol 247:1149–1159

    Article  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davoodi S, Bolhassani A, Sadat SM, Irani S (2019) Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 41:1283–1298

    Article  CAS  PubMed  Google Scholar 

  • De Keersmaecker B, Claerhout S, Carrasco J, Bar I, Corthals J, Wilgenhof S, Neyns B, Thielemans K (2020) TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J Immunother Cancer 8:e000329

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz Y, Pena F, Aristimuño OC, Matteo L, De Agrela M, Chemello ME, Michelangeli F, Ruiz MC (2012) Dissecting the Ca2+ entry pathways induced by rotavirus infection and NSP4-EGFP expression in COS-7 cells. Virus Res 167:285–296

    Article  PubMed  Google Scholar 

  • Djuzenova CS, Zimmermann U, Frank H, Sukhorukov VL, Richter E, Fuhr G (1996) Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochim Biophys Acta (BBA) Biomembr 1284:143–152

    Article  Google Scholar 

  • Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP (2009) What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol Biotechnol 41:286–295

    Article  CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP (1996) Dendritic cells in antitumor immune responses: II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Pérez D, Pal D, Ghatak S et al (2017) Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat Nanotechnol 12:974–979

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng T, Lu C (2013) Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13:3803–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182

    Article  CAS  PubMed  Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72

    Article  CAS  PubMed  Google Scholar 

  • Greaney SK, Algazi AP, Tsai KK, Takamura KT, Chen L, Twitty CG, Zhang L, Paciorek A, Pierce RH, Le MH, Daud AI, Fong L (2020) Intratumoral plasmid IL-12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol Res 8:246–254

    Article  CAS  PubMed  Google Scholar 

  • Grys M, Madeja Z, Korohoda W (2017) Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival. Cell Mol Biol Lett 22:1–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H, Hao R, Wei Y, Sun D, Sun S, Zhang Z (2012) Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol 245:789–795

    Article  CAS  PubMed  Google Scholar 

  • Heller CL, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10:312–317

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Heller LC (2015) Gene electrotransfer in clinical trials. Adv Genet 89:235–262

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Han J, Li H, Zhang X, Liu LL, Chen F, Zeng B (2018) Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology. Cells Tissues Organs 205:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hyder I, Eghbalsaied S, Kues WA (2020) Systematic optimization of square-wave electroporation conditions for bovine primary fibroblasts. BMC Mol Cell Biol 21:1–8

    Article  Google Scholar 

  • Inaba K, Steinman RM, Pack MW, Aya H, Inaba M, Sudo T, Wolpe S, Schuler G (1992a) Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 175:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992b) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  CAS  PubMed  Google Scholar 

  • Jansen Y, Kruse V, Corthals J, Schats K, van Dam PJ, Seremet T, Heirman C, Brochez L, Kockx M, Thielemans K, Neyns B (2020) A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol Immunother 69:2589–2598

    Article  CAS  PubMed  Google Scholar 

  • Jianqiong Z, Xueping Z, Wei X, Xiangnian S, Ling L (2000) Survey the highest of transformations-efficiency of the competent cell. Nanjing Shida Xuebao 23:72–75

    Google Scholar 

  • Jordan ET, Collins M, Terefe J, Ugozzoli L, Rubio T (2008) Optimizing electroporation conditions in primary and other difficult-to-transfect cells. J Biomol Tech 19:328

    PubMed  PubMed Central  Google Scholar 

  • Jung S, Choi HJ, Park HK, Jo W, Jang S, Ryu JE, Kim WJ, Yu ES, Son WC (2014) Electroporation markedly improves sleeping beauty transposon-induced tumorigenesis in mice. Cancer Gene Ther 21:333–339

    Article  CAS  PubMed  Google Scholar 

  • Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotnik T, Rems L, Tarek M, Miklavcic D (2019) Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys 48:63–91

    Article  CAS  PubMed  Google Scholar 

  • Latella MC, Di Salvo MT, Cocchiarella F, Benati D, Grisendi G, Comitato A, Marigo V, Recchia A (2016) In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther-Nucleic Acids 5:e389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz P, Bacot SM, Frazier-Jessen MR, Feldman GM (2003) Nucleoporation of dendritic cells: efficient gene transfer by electroporation into human monocyte-derived dendritic cells. FEBS Lett 538:149–154

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Boone M, Meuris L, Lemmens I, Roy NV, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, Chen J, Speleman F, Lambrechts D, de Peer YV, Tavernier J, Callewaert N (2014) Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 5:1–2

    Article  Google Scholar 

  • Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson RA, Gallagher R, Ross JA (2015) Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res 338:203–213

    Article  CAS  PubMed  Google Scholar 

  • Lucas ML, Heller R (2001) Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Mol Ther 3:47–53

    Article  CAS  PubMed  Google Scholar 

  • Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96:878–884

    Article  CAS  PubMed  Google Scholar 

  • Meijerink MR, Ruarus AH, Vroomen LG, Puijk RS, Geboers B, Nieuwenhuizen S, van den Bemd BAT, Nielsen K, de Vries JJJ, van Lienden KP, Lissenberg-Witte BI, van den Tol MP, Scheffer HJ (2021) Irreversible electroporation to treat unresectable colorectal liver metastases (COLDFIRE-2): a phase II, two-center, single-arm clinical trial. Radiology 299:470–480

    Article  PubMed  Google Scholar 

  • Mikkelsen RB, Koch B (1982) Membrane potential thermosensitivity of normal and simian virus 40-transformed lymphocytes. In: Third international symposium, cancer therapy by hyperthermia, drugs, and radiation: a symposium held at Colorado State University, Fort Collins, Colorado; Sponsored by the National Cancer Institute 61(82): 89–91

  • Mpendo J, Mutua G, Nanvubya A, Anzala O, Nyombayire J, Karita E, Dally L, Hannaman D, Price M, Fast PE, Priddy F, Gelderblom HC, Hills NK (2020) Acceptability and tolerability of repeated intramuscular electroporation of multi-antigenic HIV (HIVMAG) DNA vaccine among healthy African participants in a phase 1 randomized controlled trial. PLoS One 15:e0233151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann E, Schaefer-idder M, Wang Y, Hofschneider P (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann E, Kakorin S, Tœnsing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    Article  CAS  PubMed  Google Scholar 

  • O’Neill DW, Adams S, Bhardwaj N (2004) Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104:2235–2246

    Article  PubMed  Google Scholar 

  • Ogunremi O, Pasick J, Kobinger GP, Hannaman D, Berhane Y, Clavijo A (2013) A single electroporation delivery of a DNA vaccine containing the hemagglutinin gene of Asian H5N1 avian influenza virus generated a protective antibody response in chickens against a North American virus strain. Clin Vaccine Immunol 20:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D (2005) High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11:985–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pipes BL, Vasanwala FH, Tsang TC et al (2005) Brief heat shock increases stable integration of lipid-mediated DNA transfections. Biotechniques 38:48–52

    Article  CAS  PubMed  Google Scholar 

  • Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156:2918–2926

    CAS  PubMed  Google Scholar 

  • Potter H, Heller R (2017) Transfection by electroporation. Curr Protoc Immunol 117:10–15

    Article  PubMed  Google Scholar 

  • Potter H, Weir L, Leder P (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci 81:7161–7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prezioso C, Scribano D, Bellizzi A, Anzivino E, Rodio DM, Trancassini M, Palamara AT, Pietropaolo V (2017) Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection. Adv Virol 162:3745–3752

    CAS  Google Scholar 

  • Pucihar G, Krmelj J, Reberšek M, Napotnik TB, Miklavcic D (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288

    Article  PubMed  Google Scholar 

  • Roth TL, Puig-Saus C, Yu R et al (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai A, Doçi CL, Gutkind JS (2017) Using heterologous COS-7 cells to identify semaphorin-signaling components. Semaphorin signaling. Humana Press, New York, pp 163–170

    Chapter  Google Scholar 

  • Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheicher C, Mehlig M, Zecher R, Reske K (1992) Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J Immunol Methods 154:253–264

    Article  CAS  PubMed  Google Scholar 

  • Sherba JJ, Hogquist S, Lin H, Shan JW, Shreiber DI, Zahn JD (2020) The effects of electroporation buffer composition on cell viability and electro-transfection efficiency. Sci Rep 10:1–9

    Article  Google Scholar 

  • Soleymani S, Hadi A, Asgari F, Haghighipour N, Bolhassani A (2019) Combination of mechanical and chemical methods improves gene delivery in cell-based HIV vaccines. Curr Drug Deliv 16:818–828

    Article  CAS  PubMed  Google Scholar 

  • Son MY, Lee MO, Jeon H, Seol B, Kim JH, Chang JS, Cho YS (2016) Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med 48:e232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strome SE, Voss S, Wilcox R, Wakefield TL, Tamada K, Flies D, Chapoval A, Lu J, Kasperbauer JL, Padley D, Vile R, Gastineau D, Wettstein P, Chen L (2002) Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Can Res 62:1884–1889

    CAS  Google Scholar 

  • Takizaki M, Muranaka SI, Haine AT et al (2017) Enhancing mechanism of gene transfection by heat shock. Chem Lett 46:1158–1160

    Article  CAS  Google Scholar 

  • Thakore PI, D’ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12:1143–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200

    Article  CAS  PubMed  Google Scholar 

  • Valizadeh V, Zakeri S, Mehrizi AA, Mirkazemi S, Djadid ND (2016) Natural acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein (PvDBP-II) equally block erythrocyte binding of homologous and heterologous expressed PvDBP-II on the surface of COS-7 cells. Med Microbiol Immunol 205:85–95

    Article  CAS  PubMed  Google Scholar 

  • Venslauskas MS, Šatkauskas S (2015) Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur Biophys J 44:277–289

    Article  PubMed  Google Scholar 

  • Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics.’ Trends Biotechnol 28:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao S, Rana S, Liu D, Wise GE (2009) Electroporation optimization to deliver plasmid DNA into dental follicle cells. Biotechnol J 4:1488–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi HD, Appel S (2013) Current status and future perspectives of dendritic cell-based cancer immunotherapy. Scand J Immunol 78:167–171

    Article  Google Scholar 

  • Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Can Res 70:9053–9061

    Article  CAS  Google Scholar 

  • Zheng M, Sherba JJ, Shan JW, Lin H, Shreiber DI, Zahn JD (2017) Continuous-flow, electrically-triggered, single cell-level electroporation. Technology 5:31–41

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support by Pasteur Institute of Iran for experimental works (Grant No. 1135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Bolhassani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10616_2022_524_MOESM1_ESM.tif

Supplementary Figure 1: The pEGFP-N1 plasmid map (A) and agarose gel image of NotI digestion (B). MW is molecular ladder (1 kb, Fermentas). Supplementary file1 (TIF 431 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardani, K., Milani, A. & Bolhassani, A. Gene delivery in adherent and suspension cells using the combined physical methods. Cytotechnology 74, 245–257 (2022). https://doi.org/10.1007/s10616-022-00524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-022-00524-4

Keywords

Navigation