Skip to main content
Log in

Comparative analysis of different dietary antioxidants on oxidative stress pathway genes in L6 myotubes under oxidative stress

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Enhanced oxidative stress plays an important role in the progression and onset of diabetes and its complications. Strategies or efforts meant to reduce the oxidative stress are needed which may mitigate these pathogenic processes. The present study aims to investigate the in vitro ameliorative potential of nine antioxidant molecules in L6 myotubes under oxidative stress condition induced by 4-hydroxy-2-nonenal and also to comprehend the gene expression patterns of oxidative stress genes upon the supplementation of different antioxidants in induced stress condition. The study results demonstrated a marked increase in the level of malondialdehyde and protein carbonyl content with a subsequent increase in the free radicals that was reversed by the pretreatment of different dietary antioxidant. From the expression analysis of the oxidative stress genes, it is evident that the expression of these genes is modulated by the presence of antioxidants. The highest expression was found in the cells treated with Insulin in conjugation with an antioxidant. Resveratrol is the most potent modulator followed by Mangiferin, Estragole, and Capsaicin. This comparative analysis ascertains the potency of Resveratrol along with Insulin in scavenging the reactive oxygen species (ROS) generated under induced stress conditions through antioxidant defense mechanism against excessive ROS production, contributing to the prevention of oxidative damage in L6 myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdulkadir AA, Thanoon IA (2012) Comparative effects of glibenclamide and metformin on C-reactive protein and oxidant/antioxidant status in patients with Type II diabetes mellitus. Sultan Qaboos Univ Med J 12:55–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Abiko T, Abiko A, Clermont AC et al (2003) Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase C activation. Diabetes 352:829–837

    Article  Google Scholar 

  • Aderibigbe AO, Emudianughe TS, Lawal BA (1999) Antihyperglycemic effect of Mangifera indica in rat. Phytother Res 13:504–507

    Article  CAS  PubMed  Google Scholar 

  • Arulselvan P, Subramanian S (2007) Effect of Murraya koenigii leaf extract on carbohydrate metabolism studied in streptozotocin induced diabetic rats. Int J Biol Chem 1:21–28

    Article  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging. Dis Oxid Stress 272:20313–20319

    CAS  Google Scholar 

  • Breinholt V, Lauridsen ST, Daneshvar B et al (2000) Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat. Cancer Lett 154:201–210

    Article  CAS  PubMed  Google Scholar 

  • Can Baser KH (2008) Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des 14:3106–3119

    Article  Google Scholar 

  • Cho SY, Park JY, Park EM et al (2002) Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin Chim Acta 317:109–117

    Article  CAS  PubMed  Google Scholar 

  • Choi MS, Do KM, Park YS et al (2001) Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E. Ann Nutr Metab 45:193–201

    Article  CAS  PubMed  Google Scholar 

  • Dachani SR, Avanapu SR, Ananth PH (2012) In vitro antioxidant and glucose uptake effect of Trichodesma indicum in L-6 cell lines. J Pharm Bio Sci 3:810–819

    Google Scholar 

  • Day C (2001) The rising tide of type 2 diabetes. Br J Diabetes Vasc Dis 1:37–432

    Article  Google Scholar 

  • Deng W, Lu H, Teng J (2013) Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci 51:813–819

    Article  CAS  PubMed  Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  PubMed  Google Scholar 

  • Du C, Cao H, Sun H et al (2017) Protective effect of baicalein on oxLDL-induced oxidative stress and inflammation injury in endothelial cell. Int J Pharmacol 13:280–285

    Article  Google Scholar 

  • Erhardt JG, Meisner C, Bode JC et al (2003) Lycopene, Beta-carotene and colorectal adenomas. Am J Clin Nutr 78:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes AG, Oliveira GF, Melo MS et al (2010) Bioassay-guided evaluation of antioxidant and antinociceptive activities of Carvacrol. Basic Clin Pharmacol Toxicol 107:949–957

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hernandez-Munoz R, Olguin-Martinez M, Aguilar-Delfin I et al (2013) Oxidant status and lipid composition of erythrocyte membranes in patients with type 2 diabetes, chronic liver damage, and a combination of both pathologies. Oxid Med Cell Longev 2013:9

    Article  CAS  Google Scholar 

  • Hussein HK, Abu-Zinadah OA (2010) Antioxidant effect of curcumin extracts in induced diabetic wister rats. Int J Zool Res 6:266–276

    Article  CAS  Google Scholar 

  • Jagetia GC, Baliga MS (2003) Evaluation of the radioprotective effect of the leaf extract of Syzygium cumini (Jamun) in mice exposed to a lethal dose of gamma-irradiation. Mol Nutr Food Res 47:181–185

    Google Scholar 

  • Jeon HJ, Seo MJ, Choi HS et al (2014) Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264. 7 cells. Phytother Res 28:1701–1709

    Article  CAS  PubMed  Google Scholar 

  • Kakkar R, Kalra J, Mantha SV et al (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 151:113–119

    Article  CAS  PubMed  Google Scholar 

  • Kochhar KP (2008) Dietary spices in health and diseases (II). Indian J Physiol Pharmacol 52:327–354

    CAS  PubMed  Google Scholar 

  • Kolsi RB, Salah HB, Jardak N et al (2017) Effects of Cymodocea nodosa extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. Biomed Pharmacother 89:257–267

    Article  CAS  Google Scholar 

  • Koparal AT, Zeytinoglu M (2003) Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line A549. Cytotechnol 43(1–3):149–154

    Article  Google Scholar 

  • Kowluru RA, Kenned A (2001) Therapeutic potential of anti-oxidants and diabetic retinopathy. Expert Opin Invest Drugs 10:1665–1676

    Article  CAS  Google Scholar 

  • Kutuk O, Adli M, Poli G et al (2004) Resveratrol protects against 4-HNE induced oxidative stress and apoptosis in Swiss 3T3 fibroblasts. BioFactors 20:1–10

    Article  CAS  PubMed  Google Scholar 

  • Laaksonen DE, Atalay M, Niskanen L et al (1998) Exercise and oxidative stress in diabetes mellitus. Pathophysiology 5(Suppl 1):112

    Article  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  CAS  PubMed  Google Scholar 

  • Limaye PV, Raghuram N, Sivakami S (2003) Oxidative stress and gene expression of antioxidant enzymes in the renal cortex of streptozotocininduced diabetic rats. Mol Cell Biochem 243:147–152

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tang Q, Hu Z et al (2015) Lycopene attenuates angiotensin II induced oxidative stress in H9c2 cells. Zhonghua xin xue guan bing za zhi 43:341–346

    CAS  PubMed  Google Scholar 

  • Maritim AC, Sanders A, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  • MatEs JM, Perez-Gomez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  CAS  PubMed  Google Scholar 

  • Mc Garry JD (2002) Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Murugan P, Pari L (2006) Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin–nicotinamide-induced diabetic rats. Basic Clin Pharmacol Toxicol 99:122–127

    Article  CAS  PubMed  Google Scholar 

  • Nakhaee A, Bokaeian M, Saravani M et al (2009) Attenuation of oxidative stress in streptozotocin-induced diabetic rats by Eucalyptus globulus. Indian J Clin Biochem 24:419–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna V, Jailkhani R (2008) Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 45:41–46

    Article  CAS  PubMed  Google Scholar 

  • Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Sadhukhan P, Sinha K et al (2016) Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep 5:313–327

    PubMed  PubMed Central  Google Scholar 

  • Sanchez GM, Re L, Giuliani A et al (2000) OS Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 42:565–573

    Article  CAS  PubMed  Google Scholar 

  • Shao W, Yu Z, Chiang Y et al (2012) Curcumin prevents high-fat diet-induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS ONE 7:28784

    Article  CAS  Google Scholar 

  • Shirwaikar A, Prabhu KS, Punitha IS (2006) In vitro antioxidant studies of Sphaeranthus indicus (Linn). J Exp Biol 44:993–996

    Google Scholar 

  • Srinivas A, Menon VP, Periaswamy V et al (2003) Protection of pancreatic beta cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharm Pharm Sci 6:327–333

    Google Scholar 

  • Stadtman ER, Levine RL (2000) Protein oxidation. Ann NY Acad Sci 899:191–208

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BK, Pandey KB, Abidi AB et al (2013) Markers of oxidative stress during diabetes mellitus. J Biomark 2013:378790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usatyuk PV, Parinandi NL, Natarajan V (2006) Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 281:35554–35566

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang XM, Ribnicky DM et al (2004) Effect of a alcoholic extract of Artemisia dracunculus (Tarralin™) on glucose uptake in human skeletal muscle culture. Diabetes 53:A406–A407

    Google Scholar 

  • Wiernsperger NF (2003) Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabet Med 29:579–585

    CAS  Google Scholar 

  • Wu CH, Yeh CT, Yen GC (2010) Epigallocatechin gallate (EGCG) binds to low-density lipoproteins (LDL) and protects them from oxidation and glycation under high glucose conditions mimicking diabetes. Food Chem 121:639–644

    Article  CAS  Google Scholar 

  • Zatalia SR, Sanusi H (2013) The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med Indones 45:141–147

    PubMed  Google Scholar 

  • Zhang LL, Liu DY, Ma LQ et al (2007) Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 100:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ye M, Chen L et al (2015) Role of the ubiquitin-proteasome system and autophagy in regulation of insulin sensitivity in serum-starved 3T3-L1 adipocytes. Endocr J 62:673–686

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Li H, Gao Z et al (2005) Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Eur J Pharmacol 509:195–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Biotechnology, Government of India for the research grant (BT/362/NE/TBP/2012) extended towards completion of this work. The authors thank Dr. Bidyut Kumar Sharma, Director, DBT-AAU Centre, Assam Agricultural University for providing instrumental support. The authors also thank Gunajit Goswami, Research Scholar, Assam agricultural University for extending his help in executing this research work. The authors would like to thank Prof. S.S. Ghosh and Anil Bidkar from IIT Guwahati for the help extended in the study.

Author information

Authors and Affiliations

Authors

Contributions

PS and AB performed the experimental work, and compilation of data. PS drafted the manuscript. SB designed the study, facilitated infrastructural and financial support to carry out the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sofia Banu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Purabi Sarkar and Ananya Bhowmick are contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

a–b Activities of SOD, CAT in control and treatment groups of L6 myotubes. Results are expressed as means and standard deviations of the control and treated cells from triplicate measurements (n = 3) of three biological replicates. Data were subjected to one-way ANOVA and the significance of differences between means was calculated by Tukey’s Multiple Comparison Test using Graph pad Prism Software and significance was accepted at P < 0.05. *P < 0.05; **P < 0.01; ***P < 0.001 versus control and #P < 0.05; ##P < 0.01; ###P < 0.001 versus HNE treated (DOC 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P., Bhowmick, A. & Banu, S. Comparative analysis of different dietary antioxidants on oxidative stress pathway genes in L6 myotubes under oxidative stress. Cytotechnology 70, 1177–1192 (2018). https://doi.org/10.1007/s10616-018-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-018-0209-5

Keywords

Navigation