Skip to main content
Log in

LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Brazilian flora biodiversity has been widely investigated to identify effective and safe phytotherapeutic compounds. Among the investigated plant species, the Byrsonima genus exhibits promising biological activities. This study aimed at evaluating the cytotoxicity of B. correifolia, B. verbascifolia, B. fagifolia and B. intermedia extracts using different assays in two cell lines (primary gastric and HepG2 cells). The different extract concentrations effects on cell viability were assayed using the MTT, aquabluer, neutral red and LDH assays. Non-cytotoxic concentrations were selected to generate cell proliferation curves and to assess cell cycle kinetics by flow cytometry. Byrsonima extracts differentially affected cell viability depending on the metabolic cellular state and the biological parameter evaluated. B. fagifolia and B. intermedia extracts exhibited lower cytotoxic effects than B. correifolia and B. verbascifolia in all assays. The results obtained with LDH and flow cytometry assays were more reliable, suggesting that they can be useful in the screening for herbal medicine and to further characterize these extracts as phytotherapeutic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah AH, Mohammed AS, AbdullaH R, Mirghani MES, Al-Qubaisi M (2014) Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 andMDA-MB-231 cell lines) and bioactive constituents in the crude extract. J Altern Complement Med 14:1–10. doi:10.1186/1472-6882-14-199

    Article  Google Scholar 

  • Bernhard D, Schwaiger W, Crazzolara R, Tinhofer I, Kofler R, Csordas A (2003) Enhanced MTT—reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells. Cancer Lett 195:193–199. doi:10.1016/S0304-3835(03)00157-5

    Article  CAS  Google Scholar 

  • BRASIL (2006) Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos Departamento de Assistência Farmacêutica. Política nacional de plantas medicinais e fitoterápicos, Brasília: Ministério da Saúde, 1–60

  • Cecilio AB, De Faria DB, Oliveira PC, Caldas S, De Oliveira DA, Sobral MEG, Duarte MGR, Moreira CPS, Silva CG, De Almeida VL (2012) Screening of Brazilian medicinal plants for antiviral activity against rotavirus. J Ethnopharmacol 141:975–981. doi:10.1016/j.jep.2012.03.031

    Article  Google Scholar 

  • Cilião HL, Ribeiro DL, Camargo-Godoy RB, Specian AF, Serpeloni JM, Cólus IM (2015) Cytotoxic and genotoxic effects of high concentrations of the immunosuppressive drugs cyclosporine and tacrolimus in MRC-5 cells. Exp Toxicol Pathol 67:179–187. doi:10.1016/j.etp.2014.11.008

    Article  Google Scholar 

  • Da Costa Lopes LC, Albano F, Laranja GAT, Alves LM, Silva LFM, Souza GP, Araujo IM, Nogueira-Neto JN, Felzenszwakb I, Kovary K (2000) Toxicological evaluation by in vitro and in vivo assays of an aqueous extract prepared from Echinodorus macrophyllus leaves. Toxicol Lett 116:189–198. doi:10.1016/S0378-4274(00)00220-4

    Article  Google Scholar 

  • Dhawan A, Kayani MA, Parry JM, Parry E, Anderson D (2003) Aneugenic and clastogenic effects of doxorubicin in human lymphocytes. Mutagenesis 18:487–490. doi:10.1093/mutage/geg024

    Article  CAS  Google Scholar 

  • Di Giorgio C, Benchabane Y, Boyer G, Piccerelle P, De Méo M (2011) Evaluation of the mutagenic/clastogenic potential of 3, 6-di-substituted acridines targeted for anticancer chemotherapy. Food Chem Toxicol 49:2773–2779. doi:10.1016/j.fct.2011.07.046

    Article  CAS  Google Scholar 

  • Dosseh C, Morreti C, Tessier AM, Delaveau P (1980) Étude chimique des feuilles de Byrsonima verbascifolia rich. Ex Juss es Plantes Médicinales et Phytothérapie 14:136–142

    CAS  Google Scholar 

  • Espanha LG, Resende FA, Lima Neto JS, Boldrin PK, Nogueira CH, Santoro de Camargo M, De Grandis RA, Campaner dos Santos L, Vilegas W, Varanda EA (2014) Mutagenicity and antimutagenicity of six Brazilian Byrsonima species assessed by the Ames test. J Altern Complement Med 14:1–10. doi:10.1186/1472-6882-14-182

    Article  Google Scholar 

  • Guilhon-Simplicio F, Pereira MM (2011) Aspectos químicos e farmacológicos de Byrsonima (MALPIGHIACEAE). Quim Nova 34:1032–1041. doi:10.1590/S0100-40422011000600021

    Article  CAS  Google Scholar 

  • Han M, Li JF, Tan Q, Sun YY, Wang YY (2010) Limitations of the use of MTT assay for screening in drug discovery. J Chin Pharma Sci 9:195–200. http://118.145.16.238/Jwk_zgyxen/EN/Y2010/V19/I3/195

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  Google Scholar 

  • Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch S, Marzin D, Maurici D, Meunier JR, Müller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, Benthem J, Vanparys P, White P (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 628:31–55. doi:10.1016/j.mrgentox.2006.11.008

    Article  CAS  Google Scholar 

  • Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320. doi:10.1016/0022-1759(83)90438-6

    Article  CAS  Google Scholar 

  • Lima ZP, Santos RC, Torres TU (2008) Byrsonima fagifolia: an integrative study to validate the gastroprotective, healing, antidiarrheal, antimicrobial and mutagenic action. J Ethnopharmacol 120:149–160. doi:10.1016/j.jep.2008.07.047

    Article  Google Scholar 

  • Maldini M, Sosa S, Montoro P, Giangaspero A, Balick MJ, Pizza C, Della Loggia R (2009) Screening of the topical antiinflammatory activity of the bark of Acacia cornigera Willdenow, Byrsonima crassifolia Kunth, Sweetia panamensis Yakovlev and the leaves of Sphagneticola trilobata Hitchcock. J Ethnopharmacol 122:430–433. doi:10.1016/j.jep.2009.02.002

    Article  CAS  Google Scholar 

  • Michelin DC, Sannomiya M, Figueiredo ME, Rinaldo D, Santos LC, Souza-Brito ARM, Vilegas W, Salgado HRN (2008) Antimicrobial activity of Byrsonima species (MALPIGHIACEAE). Rev Bras Farmacogn 18:690–695. doi:10.1590/S0102-695X2008000500009

    Article  CAS  Google Scholar 

  • Moreira LQ, Vilela FC, Orlandi L, Dias DF, Santos ALA, da Silva MA, Paiva R, Alves-da-Silva G, Giusti-Paiva A (2011) Anti-inflammatory effect of extract and fractions from the leaves of Byrsonima intermedia A. Juss. in rats. J Ethnopharmacol 138:610–615. doi:10.1016/j.jep.2011.10.006

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural Products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. doi:10.1021/np200906s

    Article  CAS  Google Scholar 

  • OECD (2015) Guidance document on revisions to OECD genetic toxicology test guidelines. Genetic toxicology Guidance Document, 31 Aug

  • Pereira VV, Borel CR, Silva RR (2015) Phytochemical screening, total phenolic content and antioxidant activity of Byrsonima species. Nat Prod Res. doi:10.1080/14786419.2014.1002407

    Google Scholar 

  • Plumb JA, Milroy R, Kaye SB (1989) Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 49:4435–4440

    CAS  Google Scholar 

  • Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12(9):12347–12360. doi:10.3390/s120912347

    Article  CAS  Google Scholar 

  • Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613. doi:10.1016/S0041-0101(00)00154-9

    Article  CAS  Google Scholar 

  • Repetto G, Del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131. doi:10.1038/nprot.2008.75

    Article  CAS  Google Scholar 

  • Ribeiro DL, Cilião HL, Specian AFL, Serpeloni JM, Souza MF, Tangerina MMP, Vilegas W, Boldrin PK, Resende FA, Varanda EA, Vilegas W, Martínez-López W, Sannomiya M, Cólus IMS (2016) Chemical and biological characterisation of Machaerium hirtum (Vell.) Stellfeld: absence of cytotoxicity and mutagenicity and possible chemopreventive potential. Mutagenesis 31:146–160. doi:10.1093/mutage/gev066

    Article  Google Scholar 

  • Rinaldo D, Batista JM Jr, Rodrigues J, Benfatti AC, Rodrigues CM, Dos Santos LC, Furlan M, Vilegas W (2010) Determination of catechin diastereomers from the leaves of Byrsonima species using chiral HPLC-PAD-CD. Chirality 22:726–733. doi:10.1002/chir.20824

    CAS  Google Scholar 

  • Sannomiya M, Fonseca VB, Silva MA, Rocha LRM, Dos Santos LC, Hiruma-Lima CA, Souza Brito ARM, Vilegas W (2005a) Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts. J Ethnopharmacol 97:1–6. doi:10.1016/j.jep.2004.09.053

    Article  CAS  Google Scholar 

  • Sannomiya M, Montoro P, Piacente S, Pizza C, Souza Brito ARM, Vilegas W (2005b) Application of liquid chromatography/electropsray ionization tandem mass spectrometry to the analysis of polyphenolic compounds from an infusion of Byrsonima crassa Niedenzu. Rapid Commun Mass Spectrom 19:2244–2250. doi:10.1002/rcm.2053

    Article  CAS  Google Scholar 

  • Sannomiya M, Silva MA, dos Santos LC, de Almeida LFR, Souza Brito ARM, Salgado HRN, Vilegas W (2005c) Avaliação química e da atividade antidiarréica das folhas de Byrsonima cinera DC. (Malpighiaceae). Braz J Pharm Sci 41:79–83. doi:10.1590/S1516-93322005000100009

    Google Scholar 

  • Sannomiya M, dos Santos LC, Carbone V, Napolitano A, Piacente S, Pizza C, Souza-Brito ARM, Vilegas W (2007a) Liquid chromatography/electrospray ionization tandem mass spectrometry profiling of compounds from the infusion of Byrsonima fagifolia Niedenzu. Rapid Commun Mass Spectrom 21:1393–1400. doi:10.1002/rcm.2971

    Article  CAS  Google Scholar 

  • Sannomiya M, Cardoso CRP, Figueiredo ME, Rodrigues CM, Dos Santos LC, Dos Santos FV, Serpeloni JM, Cólus IMS, Vilegas W, Varanda EA (2007b) Mutagenic evaluation and chemical investigation of Byrsonima intermedia A. Juss. leaf extracts. J Ethnopharmacol 112:319–326. doi:10.1016/j.jep.2007.03.014

    Article  CAS  Google Scholar 

  • Santos RC, Kushima H, Rodrigues CM, Sannomiya M, Rocha LRM, Bauab TM, Tamashiro J, Vilegas W, Hiruma-Lima CA (2012) Byrsonima intermedia A. Juss.: gastric and duodenal anti-ulcer, antimicrobial and antidiarrheal effects in experimental rodent models. J Ethnopharmacol 140:203–212. doi:10.1016/j.jep.2011.12.008

    Article  CAS  Google Scholar 

  • Scudiero DA, Shoemaker RH, Paul KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    CAS  Google Scholar 

  • Serpeloni JM, Specian AFL, Ribeiro DL, Tuttis K, Vilegas W, Martínez-López W, Dokkedal AL, Saldanha LL, Cólus IMS, Varanda EA (2015) Antimutagenicity and induction of antioxidant defense by flavonoid rich extract of Myrcia bella Cambess. in normal and tumor gastric cells. J Ethnopharmacol 176:345–355. doi:10.1016/j.jep.2015.11.003

    Article  CAS  Google Scholar 

  • SIGMA-ALDRICH (2012) Benzo[a]pyrene. http://www.sigmaaldrich.com/catalog/product/sigma/b1760?lang=pt&region=BR. Accessed 2012

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112. doi:10.1093/jnci/82.13.1107

    Article  CAS  Google Scholar 

  • Sumantran Venil N (2011) Cellular chemosensitivity assays: an overview. Cancer Cell Cult Methods Protoc 731:219–236

    Article  CAS  Google Scholar 

  • Ulukaya E, Ozdikicioglu F, Oral AY, Demirci M (2008) The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol In Vitro 22:232–239. doi:10.1016/j.tiv.2007.08.006

    Article  CAS  Google Scholar 

  • Uno S, Dalton TP, Dragin N, Curran CP (2006) Oral Benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol 69:1103–1112. doi:10.1124/mol.105.021501

    Article  CAS  Google Scholar 

  • Van Tonder A, Joubert AM, Cromarty AD (2015) Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8:1. doi:10.1186/s13104-015-1000-8

    Article  Google Scholar 

  • Wang S, Yu H, Wickliffe JK (2011) Limitation of the MTT and XTT assays for measuring cell viability due to superoxide formation induced by nano-scale TiO2. Toxicol In Vitro 25:2147–2151. doi:10.1016/j.tiv.2011.07.007

    Article  CAS  Google Scholar 

  • Weyermann J, Lochmann D, Zimmer A (2005) A practical note on the use of cytotoxicity assays. Int J Pharm 288:369–376. doi:10.1016/j.ijpharm.2004.09.018

    Article  CAS  Google Scholar 

  • Zhang Q, Zhao XH, Wang ZJ (2009) Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G 2/M arrest and apoptosis. Toxicol In Vitro 23:797–807. doi:10.1016/j.tiv.2009.04.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Process No. 2009/52237-9. The authors also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship to Ana Flávia Leal Specian and PROAP; The Conselho Nacional para o Desenvolvimento Científico e Tecnológico (CNPq) for Grants to W. Vilegas, E.A. Varanda and I.M.S. Cólus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Flávia L. Specian.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Specian, A.F.L., Serpeloni, J.M., Tuttis, K. et al. LDH, proliferation curves and cell cycle analysis are the most suitable assays to identify and characterize new phytotherapeutic compounds. Cytotechnology 68, 2729–2744 (2016). https://doi.org/10.1007/s10616-016-9998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9998-6

Keywords

Navigation