Skip to main content

Advertisement

Log in

Involvement of 15-lipoxygenase-1 in the regulation of breast cancer cell death induced by sodium butyrate

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

15-Lipoxygenase-1 (15-Lox-1) as a member of fatty acid dioxygenases family has received considerable attention as an effector of cancer cell growth. The relevance of sodium butyrate on 15-Lox-1 pathway has not been determined in breast cancer. This study is aimed to investigate the possible involvement of 15-Lox-1 in the regulation of breast cancer cell growth by sodium butyrate. MTT assay was used to assess the cytotoxicity effect and Annexin-V-FITC staining was applied for detection of apoptosis using flow cytometry. The involvement of 15-Lox-1 was examined using 15-Lox-1 specific inhibitor and enzyme gene expression level and activity was further analyzed by Real-time PCR and measurement of 13(S)-HODE. The results revealed that sodium butyrate increased the expression of 15-Lox-1 and production of 13(S)HODE. 15-Lox-1 was also involved in the sodium butyrate-induced breast cancer cell cytotoxicity and apoptosis. This study provided more evidences on the positive effectiveness of 15-Lox-1/13(S)-HODE on controlling growth of breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. doi:10.1038/nrd2133

    Article  CAS  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  CAS  Google Scholar 

  • Burdick AD, Kim DJ, Peraza MA, Gonzalez FJ, Peters JM (2006) The role of peroxisome proliferator-activated receptor-beta/delta in epithelial cell growth and differentiation. Cell Signal 18:9–20

    Article  CAS  Google Scholar 

  • Cao QF, Qian SB, Wang N, Zhang L, Wang WM, Shen HB (2015) TRPM2 mediates histone deacetylase inhibition-induced apoptosis in bladder cancer cells. Cancer Biother Radiopharm 30:87–93. doi:10.1089/cbr.2014.1697

    Article  CAS  Google Scholar 

  • Comba A, Maestri DM, Berra MA, Garcia CP, Das UN, Eynard AR, Pasqualini ME (2010) Effect of omega-3 and omega-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis 9:112

    Article  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485s–2493s

    CAS  Google Scholar 

  • Fallahian F, Karami-Tehrani F, Salami S (2012) Induction of apoptosis by type Ibeta protein kinase G in the human breast cancer cell lines MCF-7 and MDA-MB-468. Cell Biochem Funct 30:183–190. doi:10.1002/cbf.1831

    Article  CAS  Google Scholar 

  • Feng Y, Bai X, Yang Q, Wu H, Wang D (2010) Downregulation of 15-lipoxygenase 2 by glucocorticoid receptor in prostate cancer cells. Int J Oncol 36:1541–1549

    Article  CAS  Google Scholar 

  • Giancotti V (2006) Breast cancer markers. Cancer Lett 243:145–159

    Article  CAS  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42. doi:10.1038/nrg2485

    Article  CAS  Google Scholar 

  • Hennig R, Kehl T, Noor S, Ding XZ, Rao SM, Bergmann F, Furstenberger G, Buchler MW, Friess H, Krieg P, Adrian TE (2007) 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia 9:917–926

    Article  CAS  Google Scholar 

  • Hoshyar R, Mahboob Z, Zarban A (2015) The antioxidant and chemical properties of Berberis vulgaris and its cytotoxic effect on human breast carcinoma cells. Cytotechnology. doi:10.1007/s10616-015-9880-y

    Google Scholar 

  • Hsi LC, Wilson LC, Eling TE (2002) Opposing effects of 15-lipoxygenase-1 and -2 metabolites on MAPK signaling in prostate alteration in peroxisome proliferator-activated receptor gamma. J Biol Chem 277:40549–40556. doi:10.1074/jbc.M203522200

    Article  CAS  Google Scholar 

  • Hsi LC, Xi X, Lotan R, Shureiqi I, Lippman SM (2004) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Res 64:8778–8781

    Article  CAS  Google Scholar 

  • Jiang WG, Watkins G, Douglas-Jones A, Mansel RE (2006) Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fat Acids 74:235–245

    Article  CAS  Google Scholar 

  • Kasibhatla S, Tseng B (2003) Why target apoptosis in cancer treatment? Mol Cancer Ther 2:573–580

    CAS  Google Scholar 

  • Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G, Krieger S, Kalt R, Hantusch B, Keller T, Nagy-Bojarszky K, Huttary N, Raab I, Lackner K, Krautgasser K, Schachner H, Kaserer K, Rezar S, Madlener S, Vonach C, Davidovits A, Nosaka H, Hammerle M, Viola K, Dolznig H, Schreiber M, Nader A, Mikulits W, Gnant M, Hirakawa S, Detmar M, Alitalo K, Nijman S, Offner F, Maier TJ, Steinhilber D, Krupitza G (2011) Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J clin Invest 121:2000–2012. doi:10.1172/jci44751

    Article  CAS  Google Scholar 

  • Lambrechts S, Decloedt J, Neven P (2011) Breast cancer prevention: lifestyle changes and chemoprevention. Acta Clin Belg 66:283–292

    CAS  Google Scholar 

  • Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  CAS  Google Scholar 

  • Li Z, Wang Y, Yuan C, Zhu Y, Qiu J, Zhang W, Qi B, Wu H, Ye J, Jiang H, Yang J, Cheng J (2014) oncogenic roles of Bmi1 and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab Invest 94:1431–1445. doi:10.1038/labinvest.2014.123

    Article  CAS  Google Scholar 

  • Li L, Sun Y, Liu J, Wu X, Chen L, Ma L, Wu P (2015) Histone deacetylase inhibitor sodium butyrate suppresses DNA double strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. BMC Biochem 16:2. doi:10.1186/s12858-014-0030-5

    Article  Google Scholar 

  • Liu C, Schain F, Han H, Xu D, Andersson-Sand H, Forsell P, Claesson HE, Bjorkholm M, Sjoberg J (2015) Epigenetic and transcriptional control of the 15-lipoxygenase-1 gene in a Hodgkin lymphoma cell line. Exp Cell Res 318:169–176

    Article  Google Scholar 

  • Margueron R, Duong V, Castet A, Cavailles V (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68:1239–1246

    Article  CAS  Google Scholar 

  • Natoni F, Diolordi L, Santoni C, Gilardini Montani MS (2005) Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 1745:318–329. doi:10.1016/j.bbamcr.2005.07.003

    Article  CAS  Google Scholar 

  • Paskova L, Smesny Trtkova K, Fialova B, Benedikova A, Langova K, Kolar Z (2013) Different effect of sodium butyrate on cancer and normal prostate cells. Toxicol In Vitro 27:1489–1495. doi:10.1016/j.tiv.2013.03.002

    Article  CAS  Google Scholar 

  • Rodrigues MF, Carvalho E, Pezzuto P, Rumjanek FD, Amoedo ND (2013) Reciprocal modulation of histone deacetylase inhibitors sodium butyrate and trichostatin a on the energy metabolism of breast cancer cells. J Cell Biochem 116:797–808. doi:10.1002/jcb.25036

    Article  Google Scholar 

  • Salimi V, Tavakoli-Yaraki M, Mahmoodi M, Shahabi S, Gharagozlou MJ, Shokri F, Mokhtari-Azad T (2013) The oncolytic effect of respiratory syncytial virus (RSV) in human skin cancer cell line, A431. Iran Red Crescent Med J 15:62–67. doi:10.5812/ircmj.4722

    Article  Google Scholar 

  • Sendobry SM, Cornicelli JA, Welch K, Bocan T, Tait B, Trivedi BK, Colbry N, Dyer RD, Feinmark SJ, Daugherty A (1997) Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmacol 120:1199–1206. doi:10.1038/sj.bjp.0701007

    Article  CAS  Google Scholar 

  • Shureiqi I, Wojno KJ, Poore JA, Reddy RG, Moussalli MJ, Spindler SA, Greenson JK, Normolle D, Hasan AA, Lawrence TS, Brenner DE (1999) Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis 20:1985–1995

    Article  CAS  Google Scholar 

  • Suraneni MV, Moore JR, Zhang D, Badeaux M, Macaluso MD, Giovanni J, Kusewitt D, Tang DG (2014) Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle 13:1798–1810. doi:10.4161/cc.28757

    Article  CAS  Google Scholar 

  • Tang Y, Wang MT, Chen Y, Yang D, Che M, Honn KV, Akers GD, Johnson SR, Nie D (2009) Downregulation of vascular endothelial growth factor and induction of tumor dormancy by 15-lipoxygenase-2 in prostate cancer. Int J Cancer 124:1545–1551. doi:10.1002/ijc.24118

    Article  CAS  Google Scholar 

  • Tavakoli Yaraki M, Karami Tehrani F (2013) Apoptosis Induced by 13-S-hydroxyoctadecadienoic acid in the breast cancer cell lines, MCF-7 and MDA-MB-231. IJBMS 16:653–659

    Google Scholar 

  • Tavakoli-Yaraki M, Karami-Tehrani F, Salimi V, Sirati-Sabet M (2013) Induction of apoptosis by Trichostatin A in human breast cancer cell lines: involvement of 15-Lox-1. Tumour Biol 34:241–249. doi:10.1007/s13277-012-0544-7

    Article  CAS  Google Scholar 

  • Xu XC, Shappell SB, Liang Z, Song S, Menter D, Subbarayan V, Iyengar S, Tang DG, Lippman SM (2003) Reduced 15S-lipoxygenase-2 expression in esophageal cancer specimens and cells and upregulation in vitro by the cyclooxygenase-2 inhibitor, NS398. Neoplasia 5:121–127

    Article  CAS  Google Scholar 

  • Yuan H, Li MY, Ma LT, Hsin MK, Mok TS, Underwood MJ, Chen GG (2010) 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax 65:321–326

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Iran University of Medical Sciences (Grant Number: 93-01-30-24624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Tavakoli-Yaraki.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, V., Shabani, M., Nourbakhsh, M. et al. Involvement of 15-lipoxygenase-1 in the regulation of breast cancer cell death induced by sodium butyrate. Cytotechnology 68, 2519–2528 (2016). https://doi.org/10.1007/s10616-016-9972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9972-3

Keywords

Navigation