Skip to main content

Advertisement

Log in

Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In the recent years, the possibility of utilizing extracellular vesicles for drug delivery purposes has been investigated in various models, suggesting that these vesicles may have such potential. In addition to the choice of donor cell type for vesicle production, a major obstacle still exists with respect of loading the extracellular vesicles efficiently with the drug of choice. One of the proposed solutions to this problem has been drug loading by electroporation, where small pores are created in the membrane of the extracellular vesicles, hereby allowing for free diffusion of the drug compound into the interior of the vesicle. We investigated the utility of adipose-derived stem cells (ASCs) as an efficient exosome donor cell type with a particular focus on the treatment of glioblastoma multiforme (GBM). In addition, we evaluated electroporation-induced effects on the ASC exosomes with respect to their endogenous potential of stimulating GBM proliferation, and morphological changes to single and multiple ASC exosomes. We found that electroporation does not change the endogenous stimulatory capacity of ASC exosomes on GBM cell proliferation, but mediates adverse morphological changes including aggregation of the exosomes. In order to address this issue, we have successfully optimized the use of a trehalose-containing buffer system as a way of maintaining the structural integrity of the exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

ASC:

Adipose-derived stem cells

BBB:

Blood–brain barrier

CD:

Cluster of differentiation

CFSE:

Carboxyfluorescein succinimidyl ester

CM:

Conditioned medium

EE:

Electroporated exosomes

ESCRT:

Endosomal sorting complex required for transport

FCS:

Fetal calf serum

GBM:

Glioblastoma multiforme

miRNA:

MicroRNA

mRNA:

Messenger RNA

MSC:

Mesenchymal stem cell

MVB:

Multivesicular bodies

NTA:

Nanoparticle tracking analysis

PEG:

Polyethylene glycol

Pen/strep:

Penicillin/streptomycin

PTA:

Phosphotungstic acid

RNA:

Ribonucleic acid

siRNA:

Small interfering RNA

TEM:

Transmission electron microscopy

TPM:

Trehalose pulse medium

UC:

Ultracentrifugation

References

  • Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. doi:10.1038/nbt.1807

    Article  CAS  Google Scholar 

  • Bryniarski K, Ptak W, Jayakumar A et al (2013) Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. doi:10.1016/j.jaci.2013.04.048

    Google Scholar 

  • Chen C, Han D, Cai C, Tang X (2010) An overview of liposome lyophilization and its future potential. J Control Release 142:299–311. doi:10.1016/j.jconrel.2009.10.024

    Article  CAS  Google Scholar 

  • Chen TS, Arslan F, Yin Y et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:47. doi:10.1186/1479-5876-9-47

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1988) Factors affecting the stability of dry liposomes. Biochim Biophys Acta 939:327–334

    Article  CAS  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158. doi:10.1007/978-0-387-39975-1_13

    Article  Google Scholar 

  • de Jong OG, Verhaar MC, Chen Y et al (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1:569. doi:10.3402/jev.v1i0.18396

    Google Scholar 

  • El Andaloussi SE, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. doi:10.1038/nrd3978

    Google Scholar 

  • Fuhrmann G, Serio A, Mazo M et al (2015) Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 205:35–44. doi:10.1016/j.jconrel.2014.11.029

    Article  CAS  Google Scholar 

  • Gudbergsson JM, Johnsen KB, Skov MN, Duroux M (2015) Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology. doi:10.1007/s10616-015-9913-6

    Google Scholar 

  • Hood JL, Scott MJ, Wickline SA (2014) Maximizing exosome colloidal stability following electroporation. Anal Biochem 448:41–49. doi:10.1016/j.ab.2013.12.001

    Article  CAS  Google Scholar 

  • Johnsen KB, Gudbergsson JM, Skov MN et al (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. doi:10.1016/j.bbcan.2014.04.005

    Google Scholar 

  • Kapla J, Wohlert J, Stevensson B et al (2013) Molecular dynamics simulations of membrane–sugar interactions. J Phys Chem B 117:6667–6673. doi:10.1021/jp402385d

    Article  CAS  Google Scholar 

  • Kapla J, Engström O, Stevensson B et al (2015) Molecular dynamics simulations and NMR spectroscopy studies of trehalose–lipid bilayer systems. Phys Chem Chem Phys 17:22438–22447. doi:10.1039/c5cp02472b

    Article  CAS  Google Scholar 

  • Katakowski M, Buller B, Zheng X et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335:201–204. doi:10.1016/j.canlet.2013.02.019

    Article  CAS  Google Scholar 

  • Katsuda T, Tsuchiya R, Kosaka N et al (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197. doi:10.1038/srep01197

    Article  Google Scholar 

  • King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421. doi:10.1186/1471-2407-12-421

    Article  CAS  Google Scholar 

  • Kooijmans SAA, Stremersch S, Braeckmans K et al (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. doi:10.1016/j.jconrel.2013.08.014

    Google Scholar 

  • Koster KL, Webb MS, Bryant G, Lynch DV (1994) Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochim Biophys Acta 1193:143–150

    Article  CAS  Google Scholar 

  • Lee HK, Finniss S, Cazacu S et al (2013) Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4:346–361

    Article  Google Scholar 

  • Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. doi:10.1007/s11010-013-1746-z

    Google Scholar 

  • Lopatina T, Bruno S, Tetta C et al (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhance their angiogenic potential. Cell Commun Signal 12:26. doi:10.1186/1478-811X-12-26

    Article  Google Scholar 

  • Momen-Heravi F, Bala S, Bukong T, Szabo G (2014) Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine. doi:10.1016/j.nano.2014.03.014

    Google Scholar 

  • Moser D, Zarka D, Hedman C, Kallas T (1995) Plasmid and chromosomal DNA recovery by electroextraction of cyanobacteria. FEMS Microbiol Lett 128:307–313

    Article  CAS  Google Scholar 

  • Munoz JL, Bliss SA, Greco SJ et al (2013) Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids 2:e126. doi:10.1038/mtna.2013.60

    Article  Google Scholar 

  • Mussauer H, Sukhorukov VL, Zimmermann U (2001) Trehalose improves survival of electrotransfected mammalian cells. Cytometry 45:161–169. doi:10.1002/1097-0320(20011101)45:3<161:AID-CYTO1159>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Ohno S-I, Takanashi M, Sudo K et al (2012) Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol Ther. doi:10.1038/mt.2012.180

    Google Scholar 

  • Pereira CS, Lins RD, Chandrasekhar I et al (2004) Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J 86:2273–2285. doi:10.1016/S0006-3495(04)74285-X

    Article  CAS  Google Scholar 

  • Pereira CS, Hünenberger PH (2006) Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B 110:15572–15581. doi:10.1021/jp060789l

    Article  CAS  Google Scholar 

  • Rasmussen JG, Frøbert O, Pilgaard L et al (2011) Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy 13:318–328. doi:10.3109/14653249.2010.506505

    Article  CAS  Google Scholar 

  • Shtam TA, Kovalev RA, Varfolomeeva EY et al (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88. doi:10.1186/1478-811X-11-88

    Article  CAS  Google Scholar 

  • Smyth T, Kullberg M, Malik N et al (2015) Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 199:145–155. doi:10.1016/j.jconrel.2014.12.013

    Article  CAS  Google Scholar 

  • Tian Y, Li S, Song J et al (2013) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. doi:10.1016/j.biomaterials.2013.11.083

    Google Scholar 

  • Villarreal MA, Díaz SB, Disalvo EA, Montich GG (2004) Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. Langmuir 20:7844–7851. doi:10.1021/la049485l

    Article  CAS  Google Scholar 

  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948. doi:10.1016/j.bbagen.2012.03.017

    Article  CAS  Google Scholar 

  • Wahlgren J, Karlson TDL, Brisslert M et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. doi:10.1093/nar/gks463

    Google Scholar 

  • Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    Article  CAS  Google Scholar 

  • Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:18389. doi:10.1074/jbc.M111.277061

    Google Scholar 

  • Yang S, Pilgaard L, Chase LG et al (2012) Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng Part C Methods 18:593–602. doi:10.1089/ten.TEC.2011.0592

    Article  CAS  Google Scholar 

  • Yeo RWY, Lai RC, Zhang B et al (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65:336–341. doi:10.1016/j.addr.2012.07.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge laboratory technician Rikke Sophie Holm Kristensen, Aalborg University for her excellent technical assistance. Furthermore, Andreas Rasmussen, Laboratory of Stem Cell Research, Aalborg University is acknowledged for his kind help and facilitation of electroporation. This work was supported by Spar Nord Fonden. Kasper Bendix Johnsen is supported by the Novo Scholarship Programme (Novo Nordisk, Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meg Duroux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnsen, K.B., Gudbergsson, J.M., Skov, M.N. et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology 68, 2125–2138 (2016). https://doi.org/10.1007/s10616-016-9952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9952-7

Keywords

Navigation