Skip to main content
Log in

Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of a Tunisian Islamic Bank

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper aims to compare the performance of four credit scoring models, namely logistic regression (LR), artificial neural network (ANN), fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS) in predicting default probability. We use a sample of 1045 consumer credits (after oversampling the initial sample of 660 customers) granted by a Tunisian Islamic bank. The six explanatory variables retained to predict the probability of default are: residual wage, age, job tenure, profession, financing type and region of residence. Our findings reveal that ANFIS and LR have the highest discriminating power (AUC = 0.9). Regarding the type I error (false-positive) and the type II (false-negative) error, it has been proved that ANFIS has the lowest misclassification costs (MC = 0.15). The outperformance of the ANFIS comes from combining the advantages of neural networks with a fuzzy inference system. Thus, our results suggest that the ANFIS seems to be the most efficient and transparent technique for predicting credit risk in Islamic banks. Unlike ANN, the ANFIS allows bankers to justify the reasons behind the rejection of credit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Parametric methods are often robust. They are operational even when we deviate significantly from their underlying assumptions. The most crucial idea to retain is that the assumptions impact the shape of the boundary created to identify the classes in the representation area. Logistic regression, for example, produces a linear separator, even if its transfer function is non-linear, in this case, the logistic function. In contrast, it constructs a linear frontier based on a linear combination of variables to separate the positives and the negatives.

  2. Since the sample is less than 30.

References

  • Abdou, H. (2009a). Credit scoring models for Egyptian banks: neural nets and genetic programming versus conventional techniques, Ph.D. Thesis, The University of Plymouth, UK.

  • Abdou, H. (2009b). An evaluation of alternative scoring models in private banking. Journal of Risk Finance, 10(1), 38–53.

    Article  Google Scholar 

  • Abdou, H. (2009c). Genetic programming for credit scoring: The case of Egyptian public sector banks. Expert Systems with Applications, 36(9), 11402–11417.

    Article  Google Scholar 

  • Abdou, H., Alam, S. T., & Mulkeen, J. (2014). Would credit scoring work for Islamic finance? A neural network approach. International Journal of Islamic and Middle Eastern Finance and Management, 7(1), 112–125.

    Article  Google Scholar 

  • Abdou, H., El-Masry, A., & Pointon, J. (2007). On the applicability of credit scoring models in Egyptian banks. Banks and Bank Systems, 2(1), 4–20.

    Google Scholar 

  • Abdou, H., & Pointon, J. (2009). Credit scoring and decision-making in Egyptian public sector banks. International Journal of Managerial Finance, 5(4), 391–406.

    Article  Google Scholar 

  • Abdou, H., & Pointon, J. (2011). Credit scoring, statistical techniques and evaluation criteria: A review of the literature ‘. Intelligent Systems in Accounting, Finance & Management, 18(2–3), 59–88.

    Article  Google Scholar 

  • Abellán, J., & Castellano, J. G. (2017). A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems with Applications, 73, 1–10.

    Article  Google Scholar 

  • Abid, L., Masmoudi, A., & Zouari-Ghorbel, S. (2018). The consumer loan’s payment default predictive model: An application of the logistic regression and the discriminant analysis in a Tunisian commercial bank. Journal of the Knowledge Economy, 9, 948–962.

    Article  Google Scholar 

  • Akben-Selcuk, E. (2015). Factors influencing college students’ financial behaviors in Turkey: Evidence from a national survey. International Journal of Economics and Finance, 7(6), 87–94.

    Article  Google Scholar 

  • Akkizidis, I., & Khandelwal, S. K. (2008). Financial risk management for islamic banking and finance. Palgrave Macmillan. https://doi.org/10.1057/9780230598751

    Book  Google Scholar 

  • Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three-stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168–178.

    Article  Google Scholar 

  • Akkoç, S. (2019). Exploring the nature of credit scoring: A neuro fuzzy approach. Fuzzy Economic Review, 24(1), 3–24.

    Article  Google Scholar 

  • Ala’raj, M., & Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge-Based Systems, 104, 89–105.

    Article  Google Scholar 

  • Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164–184.

    Article  Google Scholar 

  • Alaraj, M., Abbod, M. F., & Majdalawieh, M. (2021). Modelling customers credit card behaviour using bidirectional LSTM neural networks. Journal of Big Data, 8, 69. https://doi.org/10.1186/s40537-021-00461-7

    Article  Google Scholar 

  • Alaraj, M., Abbod, M. F., & Radi, M. (2018). The applicability of credit scoring models in emerging economies: An evidence from Jordan. International Journal of Islamic and Middle Eastern Finance and Management, 11(4), 608–630.

    Article  Google Scholar 

  • Alejo, R., García, V., Marqués, A.I., Sánchez, J.S., & Antonio-Velázquez, J.A. (2013). Making accurate credit risk predictions with cost-sensitive MLP neural networks”. In Management Intelligent Systems, pp. 1–8.

  • Al-Hmouz, A., Shen, J., Al-Hmouz, R., & Yan, J. (2012). Modeling and simulation of an adaptive neuro-fuzzy inference system (ANFIS) for mobile learning. IEEE Transactions on Learning Technologies, 5(3), 226–237.

    Article  Google Scholar 

  • Al-Hnaity, B. and Abbod, M. (2015). A novel hybrid ensemble model to predict FTSE100 Index by combining neural network and EEMD. In 2015 European Control Conference, IEEE, pp. 3021–3028.

  • Al-Saati, A. (2003). The permissible Gharar (risk) in classical Islamic jurisprudence. Journal of King Abdulaziz University: Islamic Economics, 16(2), 3–19.

    Google Scholar 

  • Altman, E. I. (2002). Bankruptcy, credit risk and high yield junk bonds. Blackwell Publishers Inc.

    Google Scholar 

  • Altman, E. I. (2018). A fifty-year retrospective on credit risk models, the Altman Z-score family of models and their applications to financial markets and managerial strategies. Journal of Credit Risk, 14(4), 34.

    Article  Google Scholar 

  • Angelini, E., di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The Quarterly Review of Economics and Finance, 48(4), 733–755.

    Article  Google Scholar 

  • Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627–635.

    Article  Google Scholar 

  • Bahnsen, A.C.; Gonzalez, A.M. (2011). Evolutionary Algorithms for Selecting the Architecture of a MLP Neural Network: A Credit Scoring Case. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 725–732.

  • Bazmara, A., & Donighi, S. S. (2014). Bank customer credit scoring by using fuzzy expert system. International Journal of Intelligent Systems and Applications, 6(11), 29–35.

    Article  Google Scholar 

  • Bhatti, I. and Misman, F.N. (2010). Risks exposure in Islamic banks: A case study of Bank Islam Malaysia Berhad (BIMB). In Australian Centre for Financial Studies-Finsia Banking and Finance Conference 2020, Windhoek, February 2020, 6. Doi:https://doi.org/10.2139/ssrn.1632849.

  • Björkegren, D., & Grissen, D. (2018). The potential of digital credit to bank the poor. AEA Papers and Proceedings, 108, 68–71. https://doi.org/10.1257/pandp.20181032

    Article  Google Scholar 

  • Bougatef, K. (2015). The impact of corruption on the soundness of Islamic banks. Borsa Istanbul Review, 15(4), 283–295.

    Article  Google Scholar 

  • Bourkhis, K., & Nabi, M. S. (2013). Islamic and conventional bank’s soundness during the 2007–2008 financial crisis. Review of Financial Economics, 22, 68–77.

    Article  Google Scholar 

  • Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446–3453.

    Article  Google Scholar 

  • Bücker, M., Szepannek, G., Gosiewska, A., & Biecek, P. (2022). Transparency, auditability, and explainability of machine learning models in credit scoring. Journal of the Operational Research Society, 73(1), 70–90. https://doi.org/10.1080/01605682.2021.1922098

    Article  Google Scholar 

  • Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable machine learning in credit risk management. Computational Economics, 57, 203–216. https://doi.org/10.1007/s10614-020-10042-0

    Article  Google Scholar 

  • Çallı, B. A., & Coşkun, E. (2021). A longitudinal systematic review of credit risk assessment and credit default predictors. SAGE Open, 11(4), 21582440211.

    Article  Google Scholar 

  • Chen C, Lin K, Rudin C, Shaposhnik Y, Wang S, and Wang T. (2018). An interpretable model with globally consistent explanations for credit risk. Computer Science Archive 2018;abs/1811.1. http://dblp.uni-trier.de/db/journals/corr/corr1811.html#abs-1811-12615.

  • Crone, S. F., & Finlay, S. (2012). Instance sampling in credit scoring: An empirical study of sample size and balancing. International Journal of Forecasting, 28(1), 224–238.

    Article  Google Scholar 

  • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function: Mathematics of Control. Signals and Systems, 2, 303–314.

    Article  Google Scholar 

  • Dahiya, S., Handa, S. S., and Singh, N. P. (2015). Credit modelling using hybrid machine learning technique, In Proceedings of IEEE sponsored international conference on Soft Computing techniques and implementations, pp. 103–106, Track‐III, October, India.

  • Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing Journal, 91, 106263.

    Article  Google Scholar 

  • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7(1), 1–30.

    Google Scholar 

  • Denison, D. G., Holmes, C. C., Mallick, B. K., & Smith, A. F. (2002). Bayesian methods for nonlinear classification and regression (p. 386). Wiley.

    Google Scholar 

  • Desai, V. S., Conway, D. G., Crook, J. N., & Overstreet, G. A. (1997). Credit-scoring models in the credit-onion environment using neural networks and genetic algorithms. IMA Journal of Mathematics Applied in Business & Industry, 1997(8), 323–346.

    Google Scholar 

  • Dumitrescu, E., Hué, S., Hurlin, C., & Tokpavi, S. (2022). Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects. European Journal of Operational Research, 297(3), 1178–1192. https://doi.org/10.1016/j.ejor.2021.06.053

    Article  Google Scholar 

  • Durand, D. (1941). Risk elements in consumer installment financing (pp. 189–201). National Bureau of Economy Research.

    Google Scholar 

  • Eletter, S. F., & Yaseen, S. G. (2017). Loan decision models for the Jordanian commercial banks. Global Business and Economics Review, 19(3), 323–338.

    Article  Google Scholar 

  • Errico, L. and Sundararajan, V. (2002). Islamic financial institutions and products in the global financial system: Key issues in risk management and challenges ahead. IMF Working Paper, 2/192, pp. 1–27.

  • Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. Technical Report, Palo Alto, USA: HP Laboratories.

  • Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery, 1, 291–316.

    Article  Google Scholar 

  • Fay, S., Hurst, E., & White, M. J. (2002). The household bankruptcy decision. American Economic Review, 92(3), 706–718.

    Article  Google Scholar 

  • Feng, X., Xiao, Z., Zhong, B., Qiu, J., & Dong, Y. (2018). Dynamic ensemble classification for credit scoring using soft probability. Applied Soft Computing, 65, 139–151.

    Article  Google Scholar 

  • Fernandez, A. (2019). Artificial intelligence in financial services. Banco de Espana Economic Bulletin 2/2019, Analytical Articles.

  • Fonseca, D. P., Wanke, P. F., & Correa, H. L. (2020). A two-stage fuzzy neural approach for credit risk assessment in a Brazilian credit card company. Applied Soft Computing, 92, 106329.

    Article  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.

    Google Scholar 

  • Garcıa, S., Fernandez, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.

    Article  Google Scholar 

  • García, V., Marqués, A. I., & Sánchez, J. S. (2012). Improving risk predictions by preprocessing imbalanced credit data (pp. 68–75). Springer.

    Google Scholar 

  • García, V., Marqués, A. I., & Sánchez, J. S. (2015). An insight into the experimental design for credit risk and corporate bankruptcy prediction systems. Journal of Intelligent Information Systems, 44(1), 159–189.

    Article  Google Scholar 

  • Gathergood, J. (2012). Self-control, financial literacy and consumer over-indebtedness. Journal of Economic Psychology, 33(3), 590–602.

    Article  Google Scholar 

  • Grace, A. M., & Williams, S. O. (2016). Comparative analysis of neural network and fuzzy logic techniques in credit risk evaluation. International Journal of Intelligent Information Technologies (IJIIT), 12(1), 47–62.

    Article  Google Scholar 

  • Hand, D. J. (2009). Mining the past to determine the future: Problems and possibilities. International Journal of Forecasting, 25(3), 441–451.

    Article  Google Scholar 

  • Hand, D. J., & Henley, W. E. (1997). Statistical classification methods in consumer credit scoring: A review. Journal of Royal Statistical Society, 160, 523–541.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). Springer.

    Book  Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall.

    Google Scholar 

  • Hecht-Nielsen, R. (1990). On the algebraic structure of feedforward network weight spaces. In Advanced Neural Computers (pp. 129–135). North-Holland.

  • Henley, W., & Hand, D. J. (1996). A k-nearest-neighbour classifier for assessing consumer credit risk. The Statistician, 45(1), 77–95.

    Article  Google Scholar 

  • Hoffmann, F., Baesens, B., Martens, J., Put, F., & Vanthienen, J. (2002). Comparing a genetic fuzzy and a neurofuzzy classifier for credit scoring. International Computer Journal of Intelligent Systems, 17(11), 1067–1083.

    Article  Google Scholar 

  • Hoffmann, F., Baesens, B., Mues, C., Van Gestel, T., & Vanthienen, J. (2007). Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. European Journal of Operational Research, 177(1), 540–555.

    Article  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed., pp. 160–164). John Wiley and Sons.

    Book  Google Scholar 

  • Hosseini, M. S., & Zekri, M. (2012). Review of medical image classification using the adaptive neuro-fuzzy inference system. Journal of Medical Signals and Sensors, 2(1), 49–60.

    Article  Google Scholar 

  • Hsieh, N. C., & Hung, L. P. (2010). A data driven ensemble classifier for credit scoring analysis. Expert Systems with Applications, 37(1), 534–545.

    Article  Google Scholar 

  • Huang, J., Cai, Y., & Xu, X. (2007). A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognition Letters, 28, 1825–1844.

    Article  Google Scholar 

  • Huang, J., Tzeng, H., & Ong, S. (2006). Two stage genetic programming for the credit scoring. Computer Journal of Applied Mathematics and Computation, 174(3), 1039–1053.

    Article  Google Scholar 

  • Hussain, H. A., & Al-Ajmi, J. (2012). Risk management practices of conventional and Islamic banks in Bahrain. The Journal of Risk Finance, 13(3), 215–239.

    Article  Google Scholar 

  • Iqbal, M., & Llewellyn, D. T. (2002). Islamic banking and finance: New perspectives on profit sharing and risk. Edward Elgar Publishing Inc.

    Book  Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing—a computational approach to learning and machine intelligence. Proceedings of the IEEE, 86(3), 600–603.

    Google Scholar 

  • Japkowicz, N., & Shah, M. (2011). Evaluating learning algorithms: A classification perspective. Cambridge University Press.

    Book  Google Scholar 

  • Joireman, J., Kees, J., & Sprott, D. (2010). Concern with immediate consequences magnifies the impact of compulsive buying tendencies on college student’s credit card debt. The Journal of Consumer Affairs, 44(1), 155–178.

    Article  Google Scholar 

  • Karim, R. A. A. (1996). The impact of the Basle capital adequacy ratio regulation on the financial and marketing strategies of Islamic banks. International Journal of Bank Marketing, 14, 32–44.

    Article  Google Scholar 

  • Keramati. A. & Youssefi. N., (2011). A proposed classification of data mining techniques in credit scoring. In Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management. Kuala Lumpur, Malaysia, January 22–24, 2011.

  • Khan. T & Ahmed. H. (2001). Risk management: an analysis of issues in Islamic financial industry. Occasional Papers 91, The Islamic Research and Teaching Institute (IRTI).

  • Kononenko, I. (1990). Comparison of inductive and naive Bayesian learning approaches to automatic knowledge acquisition. Current Trends in Knowledge Acquisition. IOS Press.

    Google Scholar 

  • Kyeong, S., & Shin, J. (2022). Two-stage credit scoring using Bayesian approach. Journal of Big Data, 9(1), 1–20.

    Article  Google Scholar 

  • Lahsasna, A., Ainon, R. N., & Wah, T. Y. (2010). Credit scoring models using soft computing methods: A survey. International Arab Journal of Information Technology, 7(2), 115–123.

    Google Scholar 

  • Lee, T., & Chen, I. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 28(4), 743–752.

    Article  Google Scholar 

  • Lee, T.-S., Chiu, C.-C., Chou, Y.-C., & Lu, C.-J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113–1130.

    Article  Google Scholar 

  • Lee, T. S., Chiu, C. C., Lu, C. J., & Chen, I. F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23(3), 245–254.

    Article  Google Scholar 

  • Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124–136.

    Article  Google Scholar 

  • Lin, X. L., & Zhong, Y. (2012). An overview of personal credit scoring: Techniques and future work. International Journal of Intelligence Science, 2(4), 181–189.

    Article  Google Scholar 

  • Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), 4–22.

    Article  Google Scholar 

  • Louzada, F., Ara, A., & Fernandes, G. B. (2016). Classification methods applied to credit scoring: Systematic review and overall comparison. Surveys in Operations Research and Management Science, 21(2), 117–134.

    Article  Google Scholar 

  • Malhotra, R., & Malhotra, K. (2002). Differentiating between good credits and bad credits using neuro-fuzzy systems. Computer Journal of Operational Research, 136(2), 190–201.

    Article  Google Scholar 

  • Markov, A., Seleznyova, Z., & Lapshin, V. (2022). Credit scoring methods: Latest trends and points to consider. The Journal of Finance and Data Science. https://doi.org/10.1016/j.jfds.2022.07.002

    Article  Google Scholar 

  • Martens, D., Baesens, B., Gestel, T., & Vanthienen, J. (2007). Comprehensible credit scoring models using rule extraction from support vector machines. European Computer Journal of Operational Research, 183(3), 1466–1476.

    Article  Google Scholar 

  • Marusteri, M., & Bacarea, V. (2010). Comparing groups for statistical differences: How to choose the right statistical test? Biochemia Medica, 20(1), 15–32.

    Article  Google Scholar 

  • Munkhdalai, L., Lee, J. Y., & Ryu, K. H. (2020). A hybrid credit scoring model using neural networks and logistic regression (pp. 251–258). Springer.

    Google Scholar 

  • Munkhdalai, L., Munkhdalai, T., Namsrai, O.-E., Lee, J. Y., & Ryu, K. H. (2019). An empirical comparison of machine-learning methods on bank client credit assessments. Sustainability, 11(3), 699. https://doi.org/10.3390/su11030699

    Article  Google Scholar 

  • Ong, C., Huang, J., & Tzeng, G. (2005). Building credit scoring models using genetic programming. Computer Journal of Expert Systems with Applications, 29(2), 41–47.

    Article  Google Scholar 

  • Ottaviani, C., & Vandone, D. (2011). Impulsivity and household indebtedness: Evidence from real life. Journal of Economic Psychology., 32(5), 754–761.

    Article  Google Scholar 

  • Paleologo, G., Elsseeff, A., & Antonini, G. (2010). Subagging for credit scoring models. European Journal of Operational Research., 201(2), 490–499.

    Article  Google Scholar 

  • Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36(1), 2–17.

    Article  Google Scholar 

  • Rekha, A., & Kotreshwar, G. (2006). Risk management in commercial banks (A case study of public and private sector banks). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.877812

    Article  Google Scholar 

  • Ruimy, M. (2008). La Finance islamique. Arnaud Franel.

    Google Scholar 

  • Shah, S. A. A., Sukmana, R., & Fianto, B. A. (2021). Integration of Islamic bank specific risks and their impact on the portfolios of Islamic Banks. International Journal of Islamic and Middle Eastern Finance and Management, 14(3), 561–578.

    Article  Google Scholar 

  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611.

    Article  Google Scholar 

  • Sidoti, P., & Devasagayam, R. (2010). Credit cards and college students: Effect of materialism and risk attitude on misuse. The Marketing Management Journal, 20(2), 64–79.

    Google Scholar 

  • Sun, J., Shang, Z., & Li, H. (2014). Imbalance-oriented SVM methods for financial distress prediction: A comparative study among the new SB-SVM-ensemble method and traditional methods. Journal of the Operational Research Society, 65, 1905–1919.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985) Fuzzy identification of systems and its application to modeling and control. In IEEE Transactions on Systems, Man, and Cybernetics, SMC-15, pp. 116–132.

  • Tang, Z., & Fishwick, P. A. (1993). Feedforward neural nets as models for time series forecasting. ORSA Journal of Computing, 5, 374–385.

    Article  Google Scholar 

  • Thomas, L. C. (2000). A survey of credit and behavioral scoring: Forecasting financial risk of lending to consumers. International Journal of Forecasting, 16(2), 149–172.

    Article  Google Scholar 

  • Tsai, C.-F., & Hung, C. (2014). Modeling credit scoring using neural network ensembles. Kybernetes, 43(7), 1114–1123. https://doi.org/10.1108/K-01-2014-0016

    Article  Google Scholar 

  • Van der Baan, M., & Jutten, C. (2000). Neural networks in geophysical applications. Geophysics, 65(4), 1032–1047.

    Article  Google Scholar 

  • Vellido A., Lisboa G., & Vaughan J. (1999). Neural networks in business: A survey of applications. In Proceedings of Expert Systems with Applications, Australia, pp. 51–70.

  • Viaene, S., & Dedene, G. (2004). Insurance fraud: Issues and challenges. Geneva Papers on Risk and Insurance. Issues and Practice, pp. 313–333.

  • Walker, R., Haasdijk, E. and Gerrets, M. (1995). Credit evaluation using a genetic algorithm. In Intelligent systems for finance and business (pp. 39–59). Suran Goonatilake and Philip Treleaven (editions), New York: Wiley.

  • Walusala, W., Rimiru, R., & Otieno, C. (2017). A hybrid machine learning approach for credit scoring using PCA and logistic regression. International Journal of Computer (IJC), 27(1), 84–102.

    Google Scholar 

  • Wang, C. M., & Huang, Y. F. (2009). Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data. Expert Systems with Applications, 36, 5900–5908.

    Article  Google Scholar 

  • Wang, F., Ding, L., Yu, H., & Zhao, Y. (2020). Big data analytics on enterprise credit risk evaluation of E-business platform. Inf. Syst. E-Bus. Manag., 2020(18), 311–350.

    Article  Google Scholar 

  • Wang, H., Xu, Q., & Zhou, L. (2015). large unbalanced credit scoring using lasso-logistic regression ensemble. PLoS ONE, 10(2), e0117844.

    Article  Google Scholar 

  • Wang, S. (1995). The unpredictability of standard back propagation neural networks in classification applications. Management Science, 41(3), 555–559.

    Article  Google Scholar 

  • West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11–12), 1131–1152.

    Article  Google Scholar 

  • Xu, D., Zhang, X., & Feng, H. (2019). Generalized fuzzy soft sets theory-based novel hybrid ensemble credit scoring model. International Journal of Finance & Economics, 24(2), 903–921.

    Article  Google Scholar 

  • Yang, X. S., & Hossein Gandomi, A. (2012). Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464–483.

    Article  Google Scholar 

  • Ye, X., Dong, L. A., & Ma, D. (2018). Loan evaluation in P2P lending based on random forest optimized by genetic algorithm with profit score. Electronic Commerce Research and Applications, 32, 23–36.

    Article  Google Scholar 

  • Yilmazer, T., & DeVaney, S. A. (2005). Household debt over the life cycle. Financial Services Review, 14, 285–304.

    Google Scholar 

  • Zhang, R., & Qiu, Z. (2020). Optimizing hyper-parameters of neural networks with swarm intelligence: A novel framework for credit scoring. PLoS ONE, 15(6), e0234254.

    Article  Google Scholar 

  • Zhang, W., He, H., & Zhang, S. (2019). A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: An application in credit scoring. Expert Systems with Applications, 121, 221–232. https://doi.org/10.1016/j.eswa.2018.12.020

    Article  Google Scholar 

  • Zhang, Y., & Bhattacharyya, S. (2004). Genetic programming in classifying large-scale data: An ensemble method. Information Sciences, 163(1–3), 85–101.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NA and KB. The first draft of the manuscript was written by NA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nadia Ayed or Khemaies Bougatef.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The characteristics

The characteristics are classified into two categories: the features representing personal data and the characteristics representing bank data.

 

Personal details

Descriptions

Type

X1

Age

Age is expressed in number of years

Continuous

X2

Marital status

Four statuses are defined: Married, Single, Divorced, Widowed

Qualitative

X3

Number of dependants

Expressed by the number of dependents, whether descendants or ascendants

Discrete

X4

Land tenure status

There are two suggestions, L for landlord (2), T for tenant (1)

Qualitative

X5

Occupation

Civil servant, private employee, Freelancer or retired

Qualitative

X6

Sex

Male or female

Qualitative

X7

Region of residence

Three broad residential areas have been defined: Greater Tunis, the interior regions and the Sahel region

Qualitative

X8

Job tenure

Calculated as the number of years in the job

Discrete

 

Banking characteristics

Descriptions

Nature

X9

Residual wage

It is the monthly pay and constitutes the salary on which the premiums are calculated

Continuous

X10

Credit amount

Shows the total amount of the credit

Continuous

X11

Financing type

These are Murabaha type products: Menzel contract, Sayara contract, Tajhizat contract, Mouchtarayet contract and Tahsinet contract

Qualitative

X12

Debt ratio

This is the customer’s debt ratio and indicates the payment amount in terms of gross salary. It is stated as a percentage

Continuous

X13

Profit rate

It is the profit rate applied by the bank, it is represented in percentage

Continuous

X14

Loan duration

The credit duration is given in months

Discrete

Y

Customer status

The status is non payor = default (1), payor = non default (0)

Binary

Appendix 2: Normality test of Shapiro–Wilk (1965)

 

ANFIS

FIS

LR

ANN

Accuracy

Statistic

0.914

0.888

0.907

0.93

df

10

10

10

10

Sig

0.307

0.16

0.26

0.451

Specificity

Statistic

0.969

0.972

0.94

0.959

df

10

10

10

10

Sig

0.882

0.905

0.548

0.77

Recall

Statistic

0.902

0.828

0.946

0.921

df

10

10

10

10

Sig

0.23

0.032*

0.627

0.367

Precision

Statistic

0.901

0.911

0.906

0.947

df

10

10

10

10

Sig

0.226

0.291

0.256

0.637

F1

Statistic

0.937

0.955

0.928

0.896

df

10

10

10

10

Sig

0.52

0.731

0.431

0.2

AUC

Statistic

0.889

0.966

0.952

0.911

df

10

10

10

10

Sig

0.164

0.848

0.691

0.291

  1. *Lilliefors Significance Correction.

Appendix 3: Paired sample T-test of accuracy and specificity

 

Accuracy

Specificity

ANFIS

FIS

LR

ANN

ANFIS

FIS

LR

ANN

Database 1

0.84

0.81

0.81

0.79

0.81

0.93

0.83

0.84

Database 2

0.88

0.82

0.84

0.85

0.86

0.95

0.87

0.84

Database 3

0.86

0.84

0.81

0.83

0.86

0.96

0.86

0.81

Database 4

0.86

0.83

0.83

0.81

0.85

0.93

0.85

0.84

Database 5

0.86

0.81

0.8

0.8

0.9

0.93

0.84

0.83

Database 6

0.82

0.82

0.83

0.83

0.87

0.93

0.83

0.87

Database 7

0.87

0.84

0.85

0.82

0.9

0.92

0.85

0.76

Database 8

0.83

0.8

0.81

0.81

0.87

0.93

0.88

0.89

Database 9

0.83

0.81

0.83

0.85

0.87

0.95

0.86

0.86

Database 10

0.86

0.81

0.8

0.8

0.89

0.96

0.86

0.85

Mean

0.851

0.819

0.821

0.819

0.868

0.939

0.853

0.839

p-valuea

 

0.000

0.003

0.006

 

0.000

0.124

0.097

p-valueb

  

0.693

1

  

0.000

0.000

p-valuec

   

0.716

   

0.25

  1. a Comparison of the ANFIS with other models.
  2. b Comparison of FIS with other models.
  3. c Comparison of logistic regression with other models.

Appendix 4: Paired sample T-test of recall and precision

 

Recall

Precision

ANFIS

FIS

LR

ANN

ANFIS

FIS

LR

ANN

Database 1

0.87

0.65

0.79

0.73

0.76

0.85

0.75

0.74

Database 2

0.9

0.64

0.8

0.86

0.81

0.89

0.8

0.78

Database 3

0.85

0.65

0.75

0.86

0.8

0.91

0.78

0.75

Database 4

0.86

0.68

0.8

0.77

0.79

0.87

0.78

0.76

Database 5

0.79

0.63

0.74

0.76

0.84

0.86

0.75

0.75

Database 6

0.74

0.65

0.84

0.78

0.79

0.86

0.76

0.8

Database 7

0.83

0.72

0.85

0.9

0.84

0.86

0.79

0.71

Database 8

0.77

0.61

0.71

0.68

0.79

0.84

0.79

0.81

Database 9

0.77

0.59

0.78

0.83

0.79

0.89

0.79

0.8

Database 10

0.81

0.56

0.71

0.73

0.83

0.91

0.77

0.76

Mean

0.819

0.638

0.777

0.79

0.804

0.874

0.776

0.766

p-valuea

 

0

0.074

0.234

 

0

0.016

0.034

p-valueb

  

0

0

  

0

0

p-valuec

   

0.486

   

0.353

  1. a Comparison of the ANFIS with other models.
  2. b Comparison of FIS with other models.
  3. c Comparison of logistic regression with other models.

Appendix 5: Paired sample T-test of F1-score and AUC

 

F1-score

AUC

ANFIS

FIS

LR

ANN

ANFIS

FIS

LR

ANN

Database 1

0.81

0.73

0.77

0.73

0.91

0.79

0.89

0.83

Database 2

0.85

0.74

0.8

0.82

0.94

0.79

0.91

0.9

Database 3

0.82

0.76

0.76

0.8

0.92

0.81

0.9

0.9

Database 4

0.83

0.76

0.79

0.76

0.93

0.8

0.9

0.86

Database 5

0.81

0.73

0.74

0.75

0.9

0.78

0.88

0.87

Database 6

0.77

0.74

0.8

0.79

0.83

0.79

0.9

0.87

Database 7

0.84

0.78

0.82

0.8

0.91

0.82

0.91

0.87

Database 8

0.78

0.71

0.75

0.74

0.89

0.77

0.91

0.83

Database 9

0.78

0.71

0.79

0.81

0.91

0.77

0.92

0.91

Database 10

0.82

0.7

0.74

0.74

0.88

0.76

0.89

0.86

Mean

0.811

0.736

0.776

0.774

0.902

0.788

0.901

0.87

p-valuea

 

0

0.011

0.014

 

0

0.92

0.018

p-valueb

  

0

0.005

  

0

0

p-valuec

   

0.25

   

0.004

  1. a Comparison of the ANFIS with other models.
  2. b Comparison of FIS with other models.
  3. c Comparison of logistic regression with other models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayed, N., Bougatef, K. Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of a Tunisian Islamic Bank. Comput Econ (2023). https://doi.org/10.1007/s10614-023-10496-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10614-023-10496-y

Keywords

Navigation