Skip to main content
Log in

Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

We propose a general recursive algorithm for the computation of the conditional probability function of the quadratic exponential model for binary panel data given the total of the responses, which is a sufficient statistic for the individual intercept parameter. This recursion permits to implement conditional and pseudo-conditional maximum likelihood estimators of the parameters of this model, and related models such as the dynamic logit model, even when one or more statistical units are observed at many occasions. In this way we solve a typical problem in dealing with distributions with a complex normalizing constant. The advantage in terms of computational load with respect to standard techniques is assessed by simulation and illustrated by an application based on a popular dataset about brand loyalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data used in Sect. 5 are publicly available at https://cran.r-project.org/package=Ecdat.

Code Availability

Custom code included in the R package https://cran.r-project.org/package=cquad.

Notes

  1. Available for the software R (https://cran.r-project.org/package=cquad) and Stata (https://ideas.repec.org/c/boc/bocode/s458852.html, https://github.com/fravale/cquadr).

  2. Data are publicly available in the R package Ecdat (https://cran.r-project.org/web/packages/Ecdat/index.html).

References

  • Agresti, A. (2003). Categorical Data Analysis, (Vol. 482). Wiley.

  • Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society: Series B, 32, 283–301.

    Google Scholar 

  • Andersen, E. B. (1971). The asymptotic distribution of conditional likelihood ratio tests. Journal of the American Statistical Association, 66, 630–633.

    Article  Google Scholar 

  • Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. Journal of the Royal Statistical Society: Series B, 34, 42–54.

    Google Scholar 

  • Arellano, M., & Hahn, J. (2016). A likelihood-based approximate solution to the incidental parameter problem in dynamic nonlinear models with multiple effects. Global Economic Review, 45, 251–274.

    Article  Google Scholar 

  • Arellano, M., & Honoré, B. (2001). Panel data models: some recent developments. In: Handbook of Econometrics, vol 5, Elsevier, pp 3229–3296.

  • Baetschmann, G., Staub, K. E., & Winkelmann, R. (2015). Consistent estimation of the fixed effects ordered logit model. Journal of the Royal Statistical Society: Series A, 178, 685–703.

    Article  Google Scholar 

  • Bartolucci, F., & Nigro, V. (2010). A dynamic model for binary panel data with unobserved heterogeneity admitting a \(\sqrt{n}\)-consistent conditional estimator. Econometrica, 78, 719–733.

    Article  Google Scholar 

  • Bartolucci, F., & Nigro, V. (2012). Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary panel data. Journal of Econometrics, 170, 102–116.

    Article  Google Scholar 

  • Bartolucci, F., & Pennoni, F. (2007). On the approximation of the quadratic exponential distribution in a latent variable context. Biometrika, 94, 745–754.

    Article  Google Scholar 

  • Bartolucci, F., & Pigini, C. (2017). cquad: An R and Stata package for conditional maximum likelihood estimation of dynamic binary panel data models. Journal of Statistical Software, 78(7)

  • Bartolucci, F., Bacci, S., & Gnaldi, M. (2015). Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata. Chapman and Hall/CRC.

  • Bartolucci, F., Bellio, R., Salvan, A., & Sartori, N. (2016). Modified profile likelihood for fixed-effects panel data models. Econometric Reviews, 35, 1271–1289.

    Article  Google Scholar 

  • Bartolucci, F., Nigro, V., & Pigini, C. (2018). Testing for state dependence in binary panel data with individual covariates by a modified quadratic exponential model. Econometric Reviews, 37, 61–88.

    Article  Google Scholar 

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B, 36, 192–225.

    Google Scholar 

  • Bester, C. A., & Hansen, C. (2009). A penalty function approach to bias reduction in nonlinear panel models with fixed effects. Journal of Business & Economic Statistics, 27, 131–148.

    Article  Google Scholar 

  • Carro, J. M. (2007). Estimating dynamic panel data discrete choice models with fixed effects. Journal of Econometrics, 140, 503–528.

    Article  Google Scholar 

  • Chamberlain, G. (1980). Analysis of covariance with qualitative data. Review of Economic Studies, 47, 225–238.

    Article  Google Scholar 

  • Chamberlain, G. (1993). Feedback in panel data medels. Harvard-Institute of Economic Research: Tech. rep.

    Google Scholar 

  • Charbonneau, K. B. (2017). Multiple fixed effects in binary response panel data models. The Econometrics Journal, 20, S1–S13.

    Article  Google Scholar 

  • Chintagunta, P., Kyriazidou, E., & Perktold, J. (2001). Panel data analysis of household brand choices. Journal of Econometrics, 103, 111–153.

    Article  Google Scholar 

  • Cox, D. R. (1972a). The analysis of multivariate binary data. Applied Statistics, 21, 113–120.

    Article  Google Scholar 

  • Cox, D. R. (1972b). Regression models and life-tables. Journal of the Royal Statistical Society: Series B, 34, 187–202.

    Google Scholar 

  • De Paula, Á. (2020). Econometric models of network formation. Annual Review of Economics, 12, 775–799.

    Article  Google Scholar 

  • Dhaene, G., & Jochmans, K. (2015). Split-panel jackknife estimation of fixed-effect models. The Review of Economic Studies, 82, 991–1030.

    Article  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K. Y., Heagerty, P. J., Zeger, S., et al. (2002). Analysis of Longitudinal Data. Oxford University Press.

  • Fernández-Val, I. (2009). Fixed effects estimation of structural parameters and marginal effects in panel probit models. Journal of Econometrics, 150, 71–85.

    Article  Google Scholar 

  • Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity. Econometrica, 85, 1033–1063.

    Article  Google Scholar 

  • Gustafsson, J. E. (1980). A solution of the conditional estimation problem for long tests in the Rasch model for dichotomous items. Educational and Psychological Measurement, 40, 377–385.

    Article  Google Scholar 

  • Hahn, J., & Kuersteiner, G. (2011). Bias reduction for dynamic nonlinear panel models with fixed effects. Econometric Theory, 27, 1152–1191.

    Article  Google Scholar 

  • Hahn, J., & Newey, W. (2004). Jackknife and analytical bias reduction for nonlinear panel models. Econometrica, 72, 1295–1319.

    Article  Google Scholar 

  • Hambleton, R. K., & Swaminathan, H. (1986). Item Response Theory: Principles and Applications. Springer Science & Business Media.

  • Heckman, JJ. (1981). Heterogeneity and state dependence. In: Studies in labor markets, University of Chicago Press, pp 91–140.

  • Honoré, B. E., & Kyriazidou, E. (2000). Panel data discrete choice models with lagged dependent variables. Econometrica, 68, 839–874.

    Article  Google Scholar 

  • Howard, S. (1972). Remark on the paper by Cox, D. R. (1972): Regression methods and life tables. Journal of the Royal Statistical Society: Series B, 34, 187–202.

    Google Scholar 

  • Hsiao, C. (2014). Analysis of Panel Data. Cambridge University Press.

  • Jain, D. C., Vilcassim, N. J., & Chintagunta, P. K. (1994). A random-coefficients logit brand-choice model applied to panel data. Journal of Business & Economic Statistics, 12, 317–328.

    Google Scholar 

  • Jochmans, K. (2018). Semiparametric analysis of network formation. Journal of Business & Economic Statistics, 36(4), 705–713.

    Article  Google Scholar 

  • Krailo, M., & Pike, M. (1984). Algorithm AS 196: conditional multivariate logistic analysis of stratified case-control studies. Journal of the Royal Statistical Society Series C, 33, 95–103.

    Google Scholar 

  • Lancaster, T. (2000). The incidental parameter problem since 1948. Journal of Econometrics, 95, 391–413.

    Article  Google Scholar 

  • Levin, B. (1987). Conditional likelihood analysis in stratum-matched retrospective studies with polytomous disease states. Communications in Statistics: Simulation and Computation, 16, 699–718.

    Article  Google Scholar 

  • Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86(413), 96–107.

    Article  Google Scholar 

  • Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Danish Institute for Educational Research.

  • Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, 4, 321–333.

  • Smith, P., Pike, M., Hill, A., Breslow, N., & Day, N. (1981). Algorithm AS 162: Multivariate conditional logistic analysis of stratum-matched case-control studies. Journal of the Royal Statistical Society: Series C, 30, 190–197.

    Google Scholar 

  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, MIT Press Books, (Vol. 1). The MIT Press.

  • Zhang, D., & Davidian, M. (2004). Likelihood and conditional likelihood inference for generalized additive mixed models for clustered data. Journal of Multivariate Analysis, 91(1), 90–106.

    Article  Google Scholar 

Download references

Funding

F. Bartolucci acknowledges the financial support from the grant “Partial effects in econometric models for binary longitudinal data based on quadratic exponential distributions” of the University of Perugia (RICBASE2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bartolucci.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Derivatives

In the following, we report the first and second derivatives for the relevant functions of the proposed recursive algorithm for the static logit, simplified, modified, and approximating QE models. These derivatives are then used to compute the score vector and Information matrix involved in the steps of the Newton-Raphson algorithm, in order to maximize the conditional log-likelihoods.

Static Logit Model

Concerning computation of the derivatives presented in Sect. 3.1 we can exploit the same recursive structure presented in Eq. (17), so that:

  1. 1.

    for \(t=1\) the first derivatives are

    $$\begin{aligned} f^{(h)}_{1,0}({\varvec{\phi }})&= 0,\quad h=1,\ldots ,T_i,\\ f^{(h)}_{1,1}({\varvec{\phi }})&= \left\{ \begin{array}{ll} \exp (\phi _1), & h=1, \\ 0, & \text{otherwise}, \end{array}\right. \\ \end{aligned}$$

    and the second derivatives are

    $$\begin{aligned} f^{(h,j)}_{1,0}({\varvec{\phi }})&= 0,\quad h,j=1,\ldots ,T_i,\\ f^{(j,j)}_{1,1}({\varvec{\phi }})&= \left\{ \begin{array}{ll}\exp (\phi _1),& h=j=1,\\ 0, & \text{otherwise}; \end{array}\right. \end{aligned}$$
  2. 2.

    for \(t=2,\ldots ,T_i\) and \(s=1,\ldots ,t\), are the first derivatives are

    $$\begin{aligned} f^{(h)}_{t,0}({\varvec{\phi }})&= {} 0,\quad h=1,\ldots ,T_i,\\ f^{(h)}_{t,s}({\varvec{\phi }})&= {} \left\{ \begin{array}{ll} f_{t-1,s}^{(h)}({\varvec{\phi }})+f_{t-1,s-1}^{(h)}({\varvec{\phi }})\exp (\phi _t), &{} h=1,\ldots ,t-1,\\ f_{t-1,s-1}({\varvec{\phi }})\exp (\phi _t), &{} h=t, \\ 0, &{} \text{otherwise}, \end{array}\right. \end{aligned}$$

    and second derivatives are

    $$\begin{aligned}&f^{(h,j)}_{t,0}({\varvec{\phi }}) = 0, \quad h,j=1,\ldots ,T_i, \\&f^{(h,j)}_{t,s}({\varvec{\phi }}) = \left\{ \begin{array}{ll} f_{t-1,s}^{(h,j)}({\varvec{\phi }})+f_{t-1,s-1}^{(h,j)}({\varvec{\phi }})\exp (\phi _t), &{} h,j=1,\ldots ,t-1,\\ f_{t-1,s-1}^{(h)}({\varvec{\phi }})\exp (\phi _t), &{} h=1,\ldots ,t-1,\, j=t\\ f_{t-1,s-1}^{(j)}({\varvec{\phi }})\exp (\phi _t), &{} h=t,\,j=1,\ldots ,t-1, \\ f_{t-1,s-1}({\varvec{\phi }})\exp (\phi _t), &{} h=j=t, \\ 0, &{} \text{otherwise}. \end{array}\right. \end{aligned}$$

Simplified QE Model

As for the static model, define now the first and the second derivatives

$$\begin{aligned} g^{(h)}_{t,s}({\varvec{\phi }})= & {} \frac{\partial g_{t,s}({\varvec{\phi }})}{\partial \phi _h},\\ g^{(h,j)}_{t,s}({\varvec{\phi }})= & {} \frac{\partial ^2 g_{t,s}({\varvec{\phi }})}{\partial \phi _h\partial \phi _j}, \end{aligned}$$

respectively, where these quantities are computed for \(h,j=1,\ldots ,T_i\), \(s=0,\ldots ,t\), and \(t=1,\ldots ,T_i\) and where we further define \(\phi _{T_i+1}=\psi \) in order to include the derivative with respect to the state dependence parameter which is an additional argument of our function further to the \(T_i\) elements of \({\varvec{\phi }}\).

Regarding the first derivatives of the function defined in (19), we exploit the same recursion:

  1. 1.

    when \(t=1\) compute

    $$\begin{aligned} g_{1,a,s,v}^{(h)}({\varvec{\phi }},\psi )=\left\{ \begin{array}{ll} \exp (\phi _1+a\psi ),&{} h=1,\\ a\exp (\phi _1+a\psi ), &{} h=T_i+1, \end{array}\right. \end{aligned}$$

    for \(a=0,1\) and \(s=v=1\) and \(g_{1,a,s,v}^{(h)}=0\) in all other cases;

  2. 2.

    when \(t=2,\ldots ,T_i\) consider the following cases:

    • for \(s=1,\ldots ,t-1\) and \(v=0\):

      $$\begin{aligned}&g^{(h)}_{t,a,s,v}({\varvec{\phi }},\psi )= g_{t-1,a,s,0}^{(h)}({\varvec{\phi }},\psi )+g_{t-1,a,s,1}^{(h)}({\varvec{\phi }},\psi ), \quad h=1,\ldots ,t-1,T_i +1; \end{aligned}$$
    • for \(s=1,\ldots ,t\), \(v=1\),

      $$\begin{aligned}&g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi ) \\&\quad =\left\{ \begin{array}{ll} g_{t-1,a,s-1,0}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t)+ g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=1,\ldots ,t-1,\\ \\ g_{t,a,s,v}({\varvec{\phi }},\psi ),&{}h=t,\\ \\ g_{t-1,a,s-1,0}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad +g_{t-1,a,s-1,1}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=T_i+1;\end{array}\right. \end{aligned}$$
    • \(g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi )=0\) in all other cases.

Regarding the second derivatives, we have:

  1. 1.

    when \(t=1\) compute

    $$\begin{aligned} g_{1,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )=\left\{ \begin{array}{ll} \exp (\phi _1+a\psi ),&{} h=j=1,\\ a\exp (\phi _1+a\psi ),&{} h=1,\,j=T_i+1,\\ a\exp (\phi _1+a\psi ), &{} h=T_i+1,\,j=1,\\ a\exp (\phi _1+a\psi ), &{} h,j=T_i+1, \end{array}\right. \end{aligned}$$

    for \(a=0,1\) and \(s=v=1\) and \(g_{1,a,s,v}^{(h)}=0\) in all other cases.

  2. 2.

    when \(t=2,\ldots ,T_i\) consider the following cases:

    • for \(s=1,\ldots ,t-1\) and \(v=0\),

      $$\begin{aligned}&g^{(h,j)}_{t,a,s,v}({\varvec{\phi }},\psi )= g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\psi )+g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\psi ), \quad h,j=1,\ldots ,t-1,T_i+1; \end{aligned}$$
    • for \(s=1,\ldots ,t\), \(v=1\),

      $$\begin{aligned}&g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )\\&\quad =\left\{ \begin{array}{ll} g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h,j=1,\ldots ,t-1,\\ \\ g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi ), &{} h=1,\ldots ,t-1,\,j=t,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), \\ \quad +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=1,\ldots ,t-1,\,j=T_i+1,\\ \\ g^{(j)}_{t,a,s,v}({\varvec{\phi }},\psi ), \quad \quad h=t,\,j=1,\ldots ,t,T_i+1,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t)+ g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad +g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=T_i+1,\,j=1,\ldots ,t-1\\ \\ g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi ), &{} h=T_i+1,\,j=t,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) + g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ) +g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad \quad \quad \quad +g_{t-1,a,s-1,1}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=T_i+1,\,j=T_i+1; \end{array}\right. \end{aligned}$$
    • \(g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )=0\) in all other cases.

Modified QE Model

Regarding the first derivatives of the function reported in Eq. (20), we exploit the same recursion:

  1. 1.

    with \(t=1\)

    • for \(s=v=0\) compute

      $$\begin{aligned}&g_{1,a,s,v}^{(h)}({\varvec{\phi }},\psi )\\&\quad =\left\{ \begin{array}{ll} 0,&{} h=1,\\ (1-a)\exp[\phi _1+ (1-a)\psi ], &{} h=T_i+1; \end{array}\right. \end{aligned}$$
    • for \(s=v=1\) compute

      $$\begin{aligned}&g_{1,a,s,v}^{(h)}({\varvec{\phi }},\psi )\\&\quad =\left\{ \begin{array}{ll} \exp (\phi _1+ a\psi ),&{} h=1,\\ a\exp (\phi _1+ a\psi ), &{} h=T_i+1; \end{array}\right. \end{aligned}$$
    • \(g_{1,a,s,v}^{(h)}=0\) in all other cases.

  2. 2.

    with \(t=2,\ldots ,T_i\) consider the following cases:

    • for \(s=0,\ldots ,t-1\) and \(v=0\),

      $$\begin{aligned}&g^{(h)}_{t,a,s,v}({\varvec{\phi }},\psi )\\&\quad =\left\{ \begin{array}{ll} 0, &{} h = 1,\ldots ,t-1,\\ \\ g_{t-1,a,s,0}^{(h)}({\varvec{\phi }},\psi )\exp (\psi ) + g_{t-1,a,s,0}\exp (\psi )\\ \quad +g_{t-1,a,s,1}^{(h)}({\varvec{\phi }},\psi ), &{} h=T_i+1;\\ \end{array}\right. \end{aligned}$$
    • for \(s=1,\ldots ,t\), \(v=1\),

      $$\begin{aligned}&g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi )\\&\quad =\left\{ \begin{array}{ll} g_{t-1,a,s-1,0}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ) \\ \quad +g_{t-1,a,s-1,0}({\varvec{\phi }},\psi )\exp (\phi _t)\\ \quad \quad +g_{t-1,a,s-1,1}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=1,\ldots ,t,\\ \\ g_{t-1,a,s-1,0}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad +g_{t-1,a,s-1,1}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=T_i+1;\end{array}\right. \end{aligned}$$
  3. 3.

    \(g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi )=0\) in all other cases.

Regarding the second derivatives, we have:

  1. 1.

    for \(t=1\) and \(v=0\) compute

    $$\begin{aligned} g_{1,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )=\begin{array}{ll} (1-a)\exp [(1-a)\psi ],&h,j=T_i+1; \end{array} \end{aligned}$$
  2. 2.

    for \(t=1\) and \(v=1\) compute

    $$\begin{aligned} g_{1,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )=\left\{ \begin{array}{ll} \exp (\phi _1+ a\psi ),&{} h=j=1,\\ a\exp (\phi _1+ a\psi ),&{} h=1,\,j=T_i+1,\\ a\exp (\phi _1+ a\psi ), &{} h=T_i+1,\,j=1,\\ a\exp (\phi _1+ a\psi ), &{} h,j=T_i+1; \end{array}\right. \end{aligned}$$

    for \(a=0,1\) and \(s=v=1\) and \(g_{1,a,s,v}^{(h)}=0\) in all other cases.

  3. 3.

    for \(t=2,\ldots ,T_i\) consider the following cases:

    • for \(s=1,\ldots ,t-1\) and \(v=0\),

      $$\begin{aligned}&g^{(h,j)}_{t,a,s,v}({\varvec{\phi }},\psi )\\&\quad = \left\{ \begin{array}{ll} g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\psi ) +\exp (\psi )+g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\psi ) &{} h = j = 1,\ldots ,t-1;\\ \\ g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\psi ) +\exp (\psi )+g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\psi )\\ \quad + g_{t-1,a,s,0}^{(h)}({\varvec{\phi }},\psi )\exp (\psi ), &{} h=1,\ldots ,t-1,j = T_i+1;\\ \\ g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\psi ) +\exp (\psi )+g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\psi )\\ \quad + g_{t-1,a,s,0}^{(j)}({\varvec{\phi }},\psi )\exp (\psi ), &{} j=1,\ldots ,t-1,h = T_i+1;\\ \\ g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\psi ) +\exp (\psi )+g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\psi )\\ \quad + g_{t-1,a,s,0}^{(h)}({\varvec{\phi }},\psi )\exp (\psi ) + g_{t-1,a,s,0}^{(j)}({\varvec{\phi }},\psi )\exp (\psi )\\ \quad \quad + g_{t-1,a,s,0}({\varvec{\phi }},\psi )\exp (\psi ),&{} j = h = T_i+1. \end{array}\right. \end{aligned}$$
    • for \(s=1,\ldots ,t\), \(v=1\),

      $$\begin{aligned}&g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )\\&\quad = \left\{ \begin{array}{ll} g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h,j=1,\ldots ,t-1,\\ \\ g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi ), &{} h=1,\ldots ,t-1,\,j=t,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), \\ \quad +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=1,\ldots ,t-1,\,j=T_i+1,\\ \\ g^{(j)}_{t,a,s,v}({\varvec{\phi }},\psi ), &{} h=t,\,j=1,\ldots ,t,T_i+1,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad +g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=T_i+1,\,j=1,\ldots ,t-1\\ \\ g_{t,a,s,v}^{(h)}({\varvec{\phi }},\psi ), &{} h=T_i+1,\,j=t,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ) +g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\psi )\exp (\phi _t+\psi )\\ \quad \quad +g_{t-1,a,s-1,1}({\varvec{\phi }},\psi )\exp (\phi _t+\psi ), &{} h=T_i+1,\,j=T_i+1; \end{array}\right. \end{aligned}$$
    • \(g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\psi )=0\) in all other cases.

Approximating QE model

Regarding the first derivatives of the function in Eq. (21), compute:

  1. 1.

    with \(t=1\),

    • for \(s=v=0\) and \(a=0,1\),

      $$\begin{aligned} g_{1,a,s,v}^{(h)}({\varvec{\phi }},\gamma )=\left\{ \begin{array}{ll} a\exp (a\nu _1)(- {\bar{r}}_{i1}), &{} h=T_i+1,\\ 0, &{} \text{otherwise}; \end{array}\right. \end{aligned}$$
    • for for \(s=v=1\) and \(a=0,1\),

      $$\begin{aligned} g_{1,a,s,v}^{(h)}({\varvec{\phi }},\gamma )=\left\{ \begin{array}{ll} \exp (\phi _1+a(\nu _1 + \gamma )),&{} h=1,\\ a\exp (\phi _1+a(\nu _1 + \gamma ))(1 - {\bar{r}}_{i1}), &{} h=T_i+1; \end{array}\right. \end{aligned}$$
    • \(g_{1,a,s,v}^{(h)}=0\) in all other cases.

  2. 2.

    for \(t=2,\ldots ,T_i\) consider the following cases:

    • for \(s=1,\ldots ,t-1\) and \(v=0\),

      $$\begin{aligned}&g_{t,a,s,v}^{(h)}({\varvec{\phi }},\gamma ) \\&\quad =\left\{ \begin{array}{ll} g_{t-1,a,s,0}^{(h)}({\varvec{\phi }},\gamma )+g_{t-1,a,s,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\nu _t), &{} h=1,\ldots ,t,\\ \\ g_{t-1,a,s,0}^{(h)}({\varvec{\phi }},\gamma )+g_{t-1,a,s,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\nu _t)\\ \quad +g_{t-1,a,s,1}({\varvec{\phi }},\gamma )\exp (\nu _t)(-{\bar{r}}_{it}), &{} h=T_i+1;\end{array}\right. \end{aligned}$$
    • for \(s=1,\ldots ,t\), \(v=1\),

      $$\begin{aligned}&g_{t,a,s,v}^{(h)}({\varvec{\phi }},\gamma ) \\&\quad =\left\{ \begin{array}{ll} g_{t-1,a,s-1,0}^{(h)}({\varvec{\phi }},\gamma )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad + g_{t-1,a,s-1,0}({\varvec{\phi }},\gamma )\exp (\phi _t) +g_{t-1,a,s-1,1}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma ), &{} h=1,\ldots ,t\\ \\ g_{t-1,a,s-1,0}^{(h)}({\varvec{\phi }},\gamma )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad +g_{t-1,a,s-1,1}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it}), &{} h=T_i+1;\end{array}\right. \end{aligned}$$
    • \(g_{t,a,s,v}^{(h)}({\varvec{\phi }},\gamma )=0\) in all other cases.

Following the same approach as above, the second derivatives are:

  1. 1.

    for \(t=1\),

    • with \(v=0\) compute

      $$\begin{aligned} g_{1,a,s,0}^{(h,j)}({\varvec{\phi }},\psi )= \begin{array}{ll} a\exp (a\nu _1)(-{\bar{r}}_{i1})^2, &{} h,j=T_i+1;\\ \end{array} \end{aligned}$$
    • while for \(v=1\) we have

      $$\begin{aligned}&g_{1,a,s,1}^{(h,j)}({\varvec{\phi }},\psi )\\&\quad =\left\{ \begin{array}{ll} \exp (\phi _1+a(\nu _1 + \gamma )),&{} h=j=1,\\ a\exp (\phi _1+a(\nu _1 + \gamma ))(1-{\bar{r}}_{i1}),&{} h=1,\,j=T_i+1,\\ a\exp (\phi _1+a(\nu _1 + \gamma ))(1-{\bar{r}}_{i1}), &{} h=T_i+1,\,j=1,\\ a\exp (\phi _1+a(\nu _1 + \gamma ))(1-{\bar{r}}_{i1})^2, &{} h,j=T_i+1; \end{array}\right. \end{aligned}$$
    • \(g_{1,a,s,v}^{(h,j)}({\varvec{\phi }},\psi ) = 0\) in other cases.

  2. 2.

    with \(t = 2,\dots ,T_i\):

    • for \(s=1\dots t-1\) and \(v=0\), we have:

      $$\begin{aligned}&g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\gamma ) \\&\quad = \left\{ \begin{array}{ll} g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\gamma ) +g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\nu _t), &{} h,j=1,\ldots ,t\\ \\ g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\gamma )+g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\nu _t) \\ \quad +g_{t-1,a,s,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\nu _t)(-{\bar{r}}_{it}), &{} h=T_i+1,\,j=1,\ldots ,t\\ \\ g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\gamma ) +g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\nu _t) \\ \quad +g_{t-1,a,s,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\nu _t)(-{\bar{r}}_{it}), &{} h=1,\ldots ,t,\,j=T_i+1,\\ \\ g_{t-1,a,s,0}^{(h,j)}({\varvec{\phi }},\gamma ) +g_{t-1,a,s,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\nu _t) \\ \quad +g_{t-1,a,s,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\nu _t)(-{\bar{r}}_{it}) + g_{t-1,a,s,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\nu _t)(-{\bar{r}}_{it})\\ \quad \quad + g_{t-1,a,s,1}\exp (\nu _t)(-{\bar{r}}_{it})^2, &{} h=T_i+1,\,j=T_i+1; \end{array}\right. \end{aligned}$$
    • for \(s=1\dots t-1\) and \(v=1\), we have:

      $$\begin{aligned}&g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\gamma ) \\&\quad = \left\{ \begin{array}{ll} g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad + g^{(h)}_{t-1,a,s-1,0}({\varvec{\phi }},\gamma )\exp (\phi _t) + g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad \quad + g^{(j)}_{t-1,a,s-1,0}({\varvec{\phi }},\gamma )\exp (\phi _t) + g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad \quad \quad +g_{t-1,a,s,0}({\varvec{\phi }},\gamma )\exp (\phi _t) + g_{t-1,a,s,1}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma ), &{} h,j=1,\ldots ,t,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad + g_{t-1,a,s-1,1}^{(h)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it}) +g^{(j)}_{t-1,a,s-1,0}({\varvec{\phi }},\gamma )\exp (\phi _t) \\ \quad \quad + g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma ) \\ \quad \quad \quad + g_{t-1,a,s,1}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it}), &{} h=1,\ldots ,t,\,j=T_i+1,\\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t) +g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad + g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it}) \\ \quad \quad + g^{(h)}_{t-1,a,s-1,0}({\varvec{\phi }},\gamma )\exp (\phi _t) + g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma ) \\ \quad \quad \quad + g_{t-1,a,s,1}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it}), &{} h=1,\ldots ,t,\,j=T_i+1,\\ \\ \\ g_{t-1,a,s-1,0}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t) + g_{t-1,a,s-1,1}^{(h,j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )\\ \quad +g^{(h)}_{t-1,a,s-1,0}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it}) \\ \quad \quad + g_{t-1,a,s-1,1}^{(j)}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it})\\ \quad \quad \quad + g_{t-1,a,s-1,1}({\varvec{\phi }},\gamma )\exp (\phi _t+\nu _t+\gamma )(1-{\bar{r}}_{it})^2, &{}h=T_i+1,\,j=T_i+1; \end{array}\right. \end{aligned}$$
  3. 3.

    \(g_{t,a,s,v}^{(h,j)}({\varvec{\phi }},\gamma )=0\) in all other cases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolucci, F., Valentini, F. & Pigini, C. Recursive Computation of the Conditional Probability Function of the Quadratic Exponential Model for Binary Panel Data. Comput Econ 61, 529–557 (2023). https://doi.org/10.1007/s10614-021-10218-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10218-2

Keywords

Navigation