Skip to main content
Log in

Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, we are particularly interested in the skew Ornstein-Uhlenbeck (OU) process. The skew OU process is a natural Markov process defined by a diffusion process with symmetric local time. Motivated by its widespread applications, we study its parameter estimation. Specifically, we first transform the skew OU process into a tractable piecewise diffusion process to eliminate local time. Then, we discretize the continuous transformed diffusion by using the straightforward Euler scheme and, finally, obtain a more familiar threshold autoregressive model. The developed Bayesian estimation methods in the autoregressive model inspire us to modify a Gibbs sampling algorithm based on properties of the transformed skew OU process. In this way, all parameters including the pair of skew parameters (pa) can be estimated simultaneously without involving complex integration. Our approach is examined via simulation experiments and empirical analysis of the Hong Kong Interbank Offered Rate (HIBOR) and the CBOE volatility index (VIX), and all of our applications show that our method performs well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. It is also known as the skew Vasicek model in interest rate modeling (see Zhuo and Menoukeupamen 2017).

  2. A typical two-regime SETAR model is defined as

    $$\begin{aligned} X_t=\left\{ \begin{array}{ll} \phi _{10}+\sum ^{l}_{i=1}\phi _{1i}X_{t-i}+\sigma _1 \epsilon _t,&{} {{if} \ X_{t-d}\le r},\\ \phi _{20}+\sum ^{l}_{i=1}\phi _{2i}X_{t-i}+\sigma _2 \epsilon _t,&{} {{if} \ r<X_{t-d}}, \end{array} \right. \end{aligned}$$
    (12)

    where \(d\le l\) is the threshold lag, r is the threshold level and \(\{\epsilon _t\}\) is the white noise with mean zero and unit variance.

References

  • Appuhamillage, T., Bokil, V., Thomann, E., Waymire, E., & Wood, B. (2011). Occupation and local times for skew Brownian motion with applications to dispersion across an interface. Annals of Applied Probability, 21(1), 183–214.

    Article  Google Scholar 

  • Appuhamillage, T., & Iresh, T. (2011). Skew diffusion with drift: A new class of stochastic processes with applications to parabolic equations with piecewise smooth coefficients. Dissertations & Theses—Gradworks.

  • Appuhamillage, T., & Sheldon, D. (2010). First passage time of skew Brownian motion. Journal of Applied Probability, 49(49), 685–696.

    Google Scholar 

  • Bardou, O., & Martinez, M. (2010). Statistical estimation for reflected skew processes. Statistical Inference for Stochastic Processes, 13(3), 231–248.

    Article  Google Scholar 

  • Barlow, M., Burdzy, K., Kaspi, H., & Mandelbaum, A. (2000). Variably skewed Brownian motion. Institute of Mathematical Statistics, 5, 57–66.

    Google Scholar 

  • Broemeling, L. D., & Cook, P. (1992). Bayesian analysis of threshold autoregressions. Communications in Statistics-Theory and Methods, 21(9), 2459–2482.

    Article  Google Scholar 

  • Buchholz, H., Lichtblau, H., & Wetzel, K. (1970). The confluent hypergeometric function, with special emphasis on its applications. Berlin: Springer.

    Google Scholar 

  • Cantrell, R. S., & Cosner, C. (1999). Diffusion models for population dynamics incorporating individual behavior at boundaries: Applications to refuge design. Theoretical Population Biology, 55(2), 189.

    Article  Google Scholar 

  • Chan, K. C., Karolyi, G. A., Longstaff, F. A., & Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate. The Journal of Finance, 47(3), 1209–1227.

    Article  Google Scholar 

  • Chan, K. S., & Tsay, R. S. (1998). Limiting properties of the least squares estimator of a continuous threshold autoregressive model. Biometrika, 413–426.

  • Chen, C. W. S., & Lee, J. C. (2010). Bayesian inference of threshold autoregressive models. Journal of Time, 16(5), 483–492.

    Google Scholar 

  • Chen, R., & Li, T. H. (1995). Blind restoration of linearly degraded discrete signals by gibbs sampling. IEEE Transactions on Signal Processing, 43(10), 2410–2413.

    Article  Google Scholar 

  • Collin-Dufresne, P., & Goldstein, R. S. (2001). Do credit spreads reflect stationary leverage ratios? The Journal of Finance, 56(5), 1929–1957.

    Article  Google Scholar 

  • Franke, J., Kreiss, J. P., & Mammen, E. (2002). Bootstrap of kernel smoothing in nonlinear time series. Bernoulli, 8(1), 1–37.

    Google Scholar 

  • Gairat, A., & Shcherbakov, V. (2016). Density of skew Brownian motion and its functionals with application in finance. Mathematical Finance.

  • Gall, J. F. L. (1984). One-dimensional stochastic differential equations involving the local times of the unknown process. Springer, Berlin Heidelberg: Stochastic Analysis and Applications.

  • Gelfand, A. E., Hills, S. E., Racine-Poon, A., & Smith, A. F. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85(412), 972–985.

    Article  Google Scholar 

  • Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398–409.

    Article  Google Scholar 

  • Gelman, A., & Rubin, D. (1991). An overview and approach to inference from iterative simulation. Technical Report, University of California-Berkeley, Dept. of Statistics.

  • Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Minneapolis, MN, USA: Federal Reserve Bank of Minneapolis, Research Department.

    Book  Google Scholar 

  • Geweke, J., & Terui, N. (1993). Bayesian threshold autoregressive models for nonlinear time series. Journal of Time Series Analysis, 14(5), 441–454.

    Article  Google Scholar 

  • Gonzalo, J., & Wolf, M. (2005). Subsampling inference in threshold autoregressive models. Journal of Econometrics, 127(2), 201–224.

    Article  Google Scholar 

  • Harrison, J. M., & Shepp, L. A. (1981). On skew Brownian motion. Annals of Probability, 9(2), 309–313.

    Google Scholar 

  • Hull, J., & White, A. (1990). Pricing interest-rate-derivative securities. The Review of Financial Studies, 3(4), 573–592.

    Article  Google Scholar 

  • Itô, K., & Mckean, H. P. (1965). Diffusion processes and their sample paths.

  • Karatzas, I., & Shreve, S. E. (1984). Trivariate density of Brownian motion, its local and occupation times, with application to stochastic control. Annals of Probability, 12(3), 819–828.

    Article  Google Scholar 

  • Lang, R. (1995). Effective conductivity and skew Brownian motion. Journal of Statistical Physics, 80(1–2), 125–146.

    Article  Google Scholar 

  • Lejay, A. (2003). Simulating a diffusion on a graph. Application to reservoir engineering. Mcma, 9(3), 241–255.

    Article  Google Scholar 

  • Lejay, A. (2004). Monte carlo methods for fissured porous media: A gridless approach. Mcma, 10(3–4), 385–392.

    Google Scholar 

  • Lejay, A. (2006). On the constructions of the skew Brownian motion. Probability Surveys, 3, 413–466.

    Article  Google Scholar 

  • Lejay, A. (2017). Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion. Statistical Inference for Stochastic Processes (1), 1–13.

  • Lejay, A., & Pichot, G. (2012). Simulating diffusion processes in discontinuous media: A numerical scheme with constant time steps. Journal of Computational Physics, 231(21), 7299–7314.

    Article  Google Scholar 

  • Nakatsuma, T. (2000). Bayesian analysis of arma-garch models: A Markov chain sampling approach. Journal of Econometrics, 95(1), 57–69.

    Article  Google Scholar 

  • Ouknine, Y., & Rutkowski, M. (1995). Local times of functions of continuous semimartingales. Stochastic Analysis & Applications, 12(13), 211–231.

    Article  Google Scholar 

  • Pfann, G. A., Schotman, P. C., & Tschernig, R. (1996). Nonlinear interest rate dynamics and implications for the term structure. Journal of Econometrics, 74(1), 149–176.

    Article  Google Scholar 

  • Protter, P. (2004). Stochastic integration and differential equations. Berlin: Springer.

    Google Scholar 

  • Ramirez, J. M. (2011). Multi-skewed Brownian motion and diffusion in layered media. Proceedings of the American Mathematical Society, 139(10), 3739–3752.

    Article  Google Scholar 

  • Revuz, D., & Yor, M. (2013). Continuous martingales and Brownian motion (Vol. 293). Berlin: Springer Science & Business Media.

    Google Scholar 

  • Ritter, C., & Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419), 861–868.

    Article  Google Scholar 

  • Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and hedging. The Journal of Finance, 52(3), 923–973.

    Article  Google Scholar 

  • Song, S., Xu, G., & Wang, Y. (2016). On first hitting times for skew CIR processes. Methodology and Computing in Applied Probability, 18(1), 169.

    Article  Google Scholar 

  • Su, F., & Chan, K. S. (2015). Quasi-likelihood estimation of a threshold diffusion process. Journal of Econometrics, 189(2), 473–484.

    Article  Google Scholar 

  • Tiao, G. C., & Tsay, R. S. (1994). Some advances in non-linear and adaptive modelling in time-series. Journal of Forecasting, 13(2), 109–131.

    Article  Google Scholar 

  • Tong, H. (1978). On a threshold model in pattern recognition and signal processing. Amsterdam: Sijthoff & Noordhoff.

    Google Scholar 

  • Tong, H. (1990). Non-linear time series: A dynamical system approach. Oxford: Oxford University Press.

    Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial and Quantitative Analysis, 5(4), 177–188.

    Google Scholar 

  • Walsh, J. B. (1978). A diffusion with a discontinuous local time. Astérisque, 52(53), 37–45.

    Google Scholar 

  • Wang, S., Song, S., & Wang, Y. (2015). Skew Ornstein-Uhlenbeck processes and their financial applications. Journal of Computational & Applied Mathematics, 273, 363–382.

    Article  Google Scholar 

  • Xu, G., Song, S., & Wang, Y. (2016). The valuation of options on foreign exchange rate in a target zone. International Journal of Theoretical and Applied Finance, 19(03), 1650020.

    Article  Google Scholar 

  • Zhang, M. (2000). Calculation of diffusive shock acceleration of charged particles by skew Brownian motion. Astrophysical Journal, 541(1), 428–435.

    Article  Google Scholar 

  • Zhu, S. P., & He, X. J. (2017). A new closed-form formula for pricing European options under a skew Brownian motion. The European Journal of Finance, 1–13.

  • Zhuo, X., & Menoukeupamen, O. (2017). Efficient piecewise trees for the generalized skew Vasicek model with discontinuous drift. International Journal of Theoretical & Applied Finance, 20, 1750028.

    Article  Google Scholar 

  • Zhuo, X., Xu, G., & Zhang, H. (2017). A simple trinomial lattice approach for the skew-extended CIR models. Mathematics and Financial Economics, 11(4), 499–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Zhuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China (Nos. 11631004, 72001024), the Fundamental Research Funds for the Central Universities (Nos. 3122019139, 3122021120), the Scientific Research Foundation for Introduced Scholars of Civil Aviation University of China (No. 2020KYQD90), and the China Postdoctoral Science Foundation (No. 2018M641396).

Appendices

Appendix

Details of Eqs.(6) and (7)

The transition density of \(Y_t\) can be constructed by the eigenvalues and eigenfunctions of the Strum–Liouville equation

$$\begin{aligned} ({\mathcal {G}}u)(x)=-\lambda u(x),\quad x\in (-\infty ,+\infty ), \end{aligned}$$

with u satisfying proper conditions at the boundaries. When the spectrum is simple and purely discrete, the spectral expansion of the density reduces to the series Eq.(7). Based on the scale density \(\zeta _Y(x)\) of the diffusion \(Y_t\), \(m_Y(x)\) is the speed density of the diffusion \(Y_t\), defined as

$$\begin{aligned} \begin{aligned} \zeta _Y(x)&=\left\{ \begin{array}{ll} \displaystyle \exp (\frac{\kappa (x-(1-p)\theta -pa)^2}{(1-p)^2\sigma ^2}),&{}{{ if}\ a\le x},\\ \displaystyle \exp (\frac{\kappa (x-p\theta -(1-p)a)^2}{p^2\sigma ^2}),&{} {{ if}\ x< a}. \end{array} \right. \\ m_Y(x)&=\left\{ \begin{array}{ll} \displaystyle \exp (\frac{2}{\zeta _Y(x)(1-p)^2\sigma ^2}),&{} {{ if}\ a\le x},\\ \displaystyle \exp (\frac{2}{\zeta _Y(x)p^2\sigma ^2}),&{}{{ if} \ x< a}. \end{array} \right. \\ \end{aligned} \end{aligned}$$
(34)

Let

$$\begin{aligned} \begin{array}{lll} z_1\triangleq \frac{\sqrt{2\kappa }}{(1-p)\sigma }(x-(1-p)\theta -pa),&{}\alpha _1\triangleq -\frac{\sqrt{2\kappa }}{(1-p)\sigma }((1-p)\theta +pa),&{}v\triangleq \frac{\lambda }{\kappa },\\ z_2\triangleq \frac{\sqrt{2\kappa }}{p\sigma }(x-p\theta -(1-p)a),&{}\alpha _2\triangleq -\frac{\sqrt{2\kappa }}{p\sigma }(p\theta +(1-p)a),&{}\varrho \triangleq -\frac{\kappa \theta ^2}{\sigma ^2}, \end{array} \end{aligned}$$

then the eigenvalues \(0\le \lambda _1<\lambda _2<\ldots <\lambda _n\rightarrow \infty \) as \(n \uparrow \infty \) in Eq.(7) are the simple discrete zeros of the Wronskian

$$\begin{aligned} \omega (\lambda )=e^{\varrho }2^{1-v}v\sqrt{(}\kappa )\left[ \frac{H_v(-\frac{\alpha _1}{\sqrt{2}})H_{v-1}(\frac{\alpha _2}{\sqrt{2}})}{(1-p)\sigma }+\frac{H_{v-1}(-\frac{\alpha _1}{\sqrt{2}})H_v(\frac{\alpha _2}{\sqrt{2}})}{p\sigma }\right] , \end{aligned}$$
(35)

and the normalized eigenfunction \(\varphi _n(x)\) follows

$$\begin{aligned} \varphi _n(x)=\left\{ \begin{array}{ll} \displaystyle \text {sign}(\xi (a,\lambda _n)\eta (a,\lambda _n))\sqrt{\frac{\eta (a,\lambda _n)}{\omega ^{\prime }(\lambda _n)\xi (a,\lambda _n)}}\xi (x,\lambda _n),&{}{{ if}\ a\le x},\\ \displaystyle \sqrt{\frac{\eta (a,\lambda _n)}{\omega ^{\prime }(\lambda _n)\xi (a,\lambda _n)}}\xi (x,\lambda _n),&{} {{ if} \ x< a}, \end{array} \right. \end{aligned}$$
(36)

where

$$\begin{aligned} \xi (x,\lambda )=e^{\frac{z_1^2}{4}}D_v(-z_1),\quad \eta (x,\lambda )=e^{\frac{z_2^2}{4}}D_v(z_2), \end{aligned}$$

the special functions \(D_v(z)\) and \(H_v(z)\) declared above are the parabolic cylinder function and the Hermite function respectively (see, e.g., Buchholz et al. 1970).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wang, Y., Zhang, H. et al. Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process. Comput Econ 60, 479–527 (2022). https://doi.org/10.1007/s10614-021-10156-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-021-10156-z

Keywords

Navigation