Skip to main content
Log in

Stochastic simulation of patterns using Bayesian pattern modeling

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, a Bayesian framework is introduced for pattern modeling and multiple point statistics simulation. The method presented here is a generalized clustering-based method where the patterns can live on a hyper-plane of very low dimensionality in each cluster. The provided generalizationallows a remarkable increase in variability of the model and a significant reduction in the number of necessary clusters for pattern modeling which leads to more computational efficiency compared with clustering-based methods. The Bayesian model employed here is a nonlinear model which is composed of a mixture of linear models. Therefore, the model is stronger than linear models for data modeling and computationally more effective than nonlinear models. Furthermore, the model allows us to extract features from incomplete patterns and to compare patterns in feature space instead of spatial domain. Due to the lower dimensionality of feature space, comparison in feature space results in more computational efficiency as well. Despite most of the previously employed methods, the feature extraction filters employed here are customized for each training image (TI). This causes the features to be more informative and useful. Using a fully Bayesian model, the method does not require extensive parameter setting and tunes its parameters itself in a principled manner. Extensive experiments on different TIs (either continuous or categorical) show that the proposed method is capable of better reproduction of complex geostatistical patterns compared with other clustering-based methods using a very limited number of clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guardiano, F., Srivastava, M.: Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia, pp. 133–144. Kluwer Academic, Dordrecht (1993)

    Chapter  Google Scholar 

  2. Isaaks, E.: The application of Monte Carlo methods to the analysis of spatially correlated data. Ph.D. thesis, Stanford University (1990)

  3. Journel, AG.: Non-parametric estimation of spatial distributions. Math. Geol. 15(3), 445–468 (1983)

    Article  Google Scholar 

  4. Strebelle, S.: Conditional simulation of complex geological structures using multiple point statistics. Math. Geol. 34(1), 1–22 (2002)

    Article  Google Scholar 

  5. Mariethoz, G., Renard, P., Straubhaar, J.: The Direct Sampling method to perform multiple-points geostatistical simulations. Water Resour. Res. (2010) doi:10.1029/2008WR007621

  6. Mariethoz, G., Renard, P.: Reconstruction of incomplete data sets or images using direct sampling. Math. Geosci. 42(3), 245–268 (2010)

    Article  Google Scholar 

  7. Tjelmeland, H., Eidsvik, J.: Directional Metropolis–Hastings updates for posteriors with nonlinear likelihood. In: Leuangthong, O., Deutsch, C.V. (eds.) Geostatistics, pp. 195–104. Springer, Banff (2004)

    Google Scholar 

  8. Tjelmeland, H.: Stochastic models in reservoir characterization and Markov random fields for compact objects. Doctoral dissertation, Norwegian University of Science and Technology, Trondheim (1996)

    Google Scholar 

  9. Kjønsberg, H., Kolbjørnsen, O.: Markov mesh simulations with data conditioning through indicator kriging. In: Proceedings of the 8th International Geostatistics Congress. Santiago, Chile (2008)

    Google Scholar 

  10. Lyster, S., Deutsch, C.V.: MPS simulation in a Gibbs sampler algorithm. In: Proceedings of the 8th International Geostatistics Congress. Santiago, Chile (2008)

    Google Scholar 

  11. Arpat, BG., Caers, J.,: Stochastic simulation with patterns. Math. Geol. 39(202), 177–203 (2007)

    Article  Google Scholar 

  12. Zhang, T., Switzer, P., Journel, A.G.: Filter-based classification of training image patterns for spatial simulation. Math. Geol. 38, 63–80 (2006)

    Article  Google Scholar 

  13. Wu, J., Zhang, T., Journel, A.G.: A fast FILTERSIM simulation with score-based distance. Math. Geosci. 47, 773–788 (2008)

    Article  Google Scholar 

  14. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)

    Article  Google Scholar 

  15. Gloaguen, E., Dimitrakopoulos, R.: Two-dimensional conditional simulations based on the wavelet decomposition of training images. Math. Geosci. 41(6), 679–701 (2009)

    Article  Google Scholar 

  16. Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16(3), 779–797 (2012)

    Article  Google Scholar 

  17. Bishop, C.M., Winn, J.: Non-linear Bayesian image modeling. In: Proceedings of the 6th European Conference on Computer Vision. Dublin, Ireland (2000)

    Google Scholar 

  18. Choudrey, R.A., Roberts, S.J.: Variational mixture of Bayesian independent component analyzers. Neural Comput. 15(1), 213–252 (2003)

    Article  Google Scholar 

  19. Chen, M., Silva, J., Paisley, J., Wang, C., Dunson, D., Carin, L.: Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds. IEEE Trans. Sig. Proc. 58(12), 6140–6155 (2010)

    Article  Google Scholar 

  20. Carin, L., Baraniuk, R.G., Cevher, V., Dunson, D., Jordan, M.I., Sapiro, G., Wakin, M.B.: Learning low-dimensional signal models. IEEE Sig. Proc. Mag. 28(2), 39–51 (2011)

    Article  Google Scholar 

  21. Bouguila, N., Ziou, D.: A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling. IEEE Trans. Neural Nets. 21(1) 107–122 (2010)

    Article  Google Scholar 

  22. Caers, J., Journel, A.G.: Stochastic reservoir simulation using neural networks trained on outcrop data. SPE paper 49026 (1998)

  23. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  24. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)

    Google Scholar 

  25. Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1996)

    Article  Google Scholar 

  26. Aharon, M., Elad, M., Bruckstein, A.M.: K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Proc. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  27. Lewicki, M.S., Olshausen, B.A.: A probabilistic framework for the adaptation and comparison of image codes. J. Opt. Soc. Amer. A: Opt., Image Sci. Vision. 16(7), 1587–1601 (1999)

    Article  Google Scholar 

  28. Tošić, I., Frossard, P.: Dictionary learning what is the right representation for my signal. IEEE Sig. Proc. Mag. 28(2), 27–38 (2011)

    Article  Google Scholar 

  29. Jiang, J.: Image compression with neural networks—a survey. Signal Process. Image Commun. 14, 737–760 (1999)

    Article  Google Scholar 

  30. Tsekouras, G.E, Antonios, M., Anagnostopoulos, C., Gavalas, D., Economou, D.: Improved batch fuzzy learning vector quantization for image compression. Inf. Sci. 178, 3895–3907 (2008)

    Article  Google Scholar 

  31. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  32. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 6(6), 721–741 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Faez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdollahifard, M.J., Faez, K. Stochastic simulation of patterns using Bayesian pattern modeling. Comput Geosci 17, 99–116 (2013). https://doi.org/10.1007/s10596-012-9319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9319-x

Keywords

Navigation