Skip to main content

Advertisement

Log in

Phylogeographic-based conservation implications for the New Zealand long-tailed bat, (Chalinolobus tuberculatus): identification of a single ESU and a candidate population for genetic rescue

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The New Zealand long-tailed bat (Chalinolobus tuberculatus) is an endemic species threatened with extinction. Since the arrival of humans, massive deforestation has occurred and invasive mammalian predators were introduced. As a result, C. tuberculatus’ distribution shrank dramatically and became fragmented. To aid the management of the remaining populations, two Evolutionary Significant Units (ESUs) were designated: one on each of New Zealand’s main islands. We utilised mitochondrial sequence data (cytb, 703 bp) and 10 nuclear DNA microsatellite loci to reconstruct the demographic history of this species, to characterise the level of genetic diversity in remaining populations, and to assess the current connectivity between them. Our results indicate that the North Island, with the highest genetic diversity, served as a glacial refuge, with a loss of diversity following the path recolonization to the south of the South Island. However, our data are also consistent with continued, or at least very recent, genetic exchange between colonies across the species distribution. The only exception is the Hanging Rock colony on the east coast of the South Island, which appears to be isolated. Thus, there was no support for the previously designated ESUs. Signatures of past population declines were found in three colonies, the most extreme of which was found in Hanging Rock. Consequently, we recommend that it be genetically rescued via translocation from a donor population. In general, future management priorities should treat Chalinolobus tuberculatus as a single unit, focusing on maintaining connectivity between remaining populations, together with continued roost protection and pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323–327. doi:10.1186/1471-2105-9-323

    Article  Google Scholar 

  • Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28:819–825

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7:367–369

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Gr Stat 7:434–455

    Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216. doi:10.1146/annurev.ecolsys.110308.120324

    Article  Google Scholar 

  • Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proc R Soc Lond B 266:975–980

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekrout A, Cursons RT, Wilkins RJ (2009) Microsatellite markers for the endemic New Zealand long-tailed bat (Chalinolobus tuberculatus). Mol Ecol Resour 9:616–618

    Article  CAS  PubMed  Google Scholar 

  • Dool SE et al (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070. doi:10.1111/mec.12373

    Article  CAS  PubMed  Google Scholar 

  • Dool SE et al (2016) Nuclear introns outperform mitochondrial DNA in phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Mol Phylogenet Evol 97:196–212. doi:10.1016/j.ympev.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattra JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenton MB (1969) Summer activity of Myotis lucifugus (Chiroptera: Vespertilionidae) at hibernacula in Ontario and Quebec. Can J Zool 47:597–602

    Article  Google Scholar 

  • Foley NM et al (2015) How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol Biol Evol 32:313–333

    Article  CAS  PubMed  Google Scholar 

  • Francis CM, Habersetzer J (1998) Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, Rhinolophus and Hipposideros. In: Kunz TH, Racey PA (eds) Bat: biology and conservation. Smithsonian Institution Press, Washington, pp 169–179

    Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618. doi:10.1111/mec.13139

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Gardner RC, De Lange PJ, Keeling DJ, Bowala T, Brown HA, Wright SD (2004) A late Quaternary phylogeography for Metrosideros (Myrtaceae) in New Zealand inferred from chloroplast DNA haplotypes. Biol J Linn Soc 83:399–412

    Article  Google Scholar 

  • Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19:3845–3852

    Article  PubMed  Google Scholar 

  • Girod C, Vitalis R, Leblois R, Fréville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). www.unil.ch/izea/softwares/fstat.html

  • Guilbert J, Walker M, Greif S, Parsons S (2007) Evidence of homing following translocation of long-tailed bats (Chalinolobus tuberculatus) at Grand Canyon Cave, New Zealand. N Z J Zool 34:239–246

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580. doi:10.1093/molbev/msp274

    Article  CAS  PubMed  Google Scholar 

  • Hill JE, Daniel MJ (1985) Systematics of the New Zealand short-tailed bat Mystacina Gray, 1843 (Chiroptera: Mystacinadae). Bull Br Mus Nat Hist Zool 48:279–300

    Google Scholar 

  • Hitchmough R, Bull L, Cromarty P (2007) New Zealand Threat Classification System lists. Science and Technical Publishing, Wellington

    Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel S, Faville MZ, Gemmill CE (2002) Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand. J Biogeogr 29:663–676

    Article  Google Scholar 

  • Hoofer SR, Van Den Bussche RA (2003) Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterol 5(supplement):1–63

    Article  Google Scholar 

  • Hyndman RJ, Einbeck J, Wand M (2013) Package ‘hdrcde’ R package version 3

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Jiang T et al (2013) Factors affecting geographic variation in echolocation calls of the endemic Myotis davidii in China. Ethology 119:881–890

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  • Kerth G (2008) Causes and consequences of sociality in bats. Bioscience 58:737–746

    Article  Google Scholar 

  • Kerth G, Petit E (2005) Colonization and dispersal in a social species, the Bechstein’s bat (Myotis bechsteinii). Mol Ecol 14:3943–3950

    Article  PubMed  Google Scholar 

  • Kerth G, Mayer F, König B (2000) Mitochondiral DNA (mtDNA) reveals that female Bechstein’s bats live in closed societies. Mol Ecol 9:793–800

    Article  CAS  PubMed  Google Scholar 

  • Lettink M, Armstrong DP (2003) An introduction to using mark-recapture analysis for monitoring threatened species. Dep Conserv Tech Ser A 28:5–32

    Google Scholar 

  • Lin A et al (2015) Geographical variation in echolocation vocalizations of the Himalayan leaf-nosed bat: contribution of morphological variation and cultural drift. Oikos 124:364–371

    Article  Google Scholar 

  • Lloyd BD (2003a) The demographic history of the New Zealand short-tailed bat Mystacina tuberculata inferred from modified control region sequences. Mol Ecol 12:1895–1911

    Article  PubMed  Google Scholar 

  • Lloyd BD (2003b) Intraspecific phylogeny of the New Zealand short-tailed bat Mystacina tuberculata inferred from multiple mitochondrial gene sequences. Syst Biol 52:460–476

    Article  PubMed  Google Scholar 

  • Loader C (1999) Local regression and likelihood, vol 47. Springer, New York

    Google Scholar 

  • McGlone MS, Salinger MJ, Moar NT (1993) Paleovegetation studies of New Zealand’s climate since the last glacial maximum Wright, HE, Jr, Kutzbach, JE, Webb:294–317

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell CFJ (2000a) Conservation status and causes of decline of the thratened New Zealand long-tailed bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae). Mamm Rev 30:89–106

    Article  Google Scholar 

  • O’Donnell CFJ (2000b) Cryptic local populations in a temperate rainforest bat Chalinolobus tuberculatus in New Zealand. Anim Conserv 3:287–297

    Article  Google Scholar 

  • O’Donnell CFJ (2001a) Home range and use of space by Chalinolobus tuberculatus, a temperate rainforest bat from New Zealand. J Zool 253:253–264

    Article  Google Scholar 

  • O’Donnell CFJ (2002) Variability in numbers of long-tailed bats (Chalinolobus tuberculatus) roosting in Grand Canyon Cave, New Zealand: Implications for monitoring population trends. N Z J Zool 29:273–284

    Article  Google Scholar 

  • O’Donnell CFJ (2008) Chalinolobus tuberculatus The IUCN Red List of Threatened Species version 2014.3 <Downloaded on 29 May 2015>: e.T4425A10881758. http://dx.doi.org/10881710.10882305/IUCN.UK.10882008.RLTS.T10884425A10881758.en

  • O’Donnell CFJ (2010) The ecology and conservation of New Zealand bats. In: Fleming TH, Racey PA (eds) Island bats: evolution, ecology and conservation. Chicago University Press, Chicago, pp 460–495

    Google Scholar 

  • O’Donnell CFJ, Sedgeley JA (1999) Use of roosts by the long-tailed bat, Chalinolobus tuberculatus, in temperate rainforest in New Zealand. J Mammal 80:913–923

    Article  Google Scholar 

  • O’Donnell CFJ, Christie JE, Lloyd B, Parsons S, Hitchmough R (2013) Conservation status of New Zealand bats, 2012 New Zealand Threat Classification Series 6

  • O’Donnell CFJ, Richter S, Dool SE, Monks JM, Kerth G (2016) Genetic diversity is maintained in the endangered New Zealand long-tailed bat (Chalinolobus tuberculatus) despite a closed social structure and regular population crashes. Conserv Genet 17:91–102. doi:10.1007/s10592-015-0763-8

    Article  Google Scholar 

  • O’Donnell CFJ (2001b) Advances in New Zealand mammalogy 1990–2000: long-tailed bat. J R Soc N Z 31:43–57

    Article  Google Scholar 

  • O’Donnell CFJ, Christie JE, Hitchmough RA, Lloyd B, Parsons S (2010) The conservation status of New Zealand bats, 2009 New Zealand. J Zool 37:297–311

    Google Scholar 

  • Parsons S (1997) Search-phase echolocation calls of the New Zealand lesser short-tailed bat (Mystacina tuberculata) and long-tailed bat (Chalinolobus tuberculatus). Can J Zool 75:1487–1494

    Article  Google Scholar 

  • Peery MZ et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Petit E, Excoffier L, Mayer F (1999) No evidence of bottleneck in the postglacial recolonization of Europe by the noctule bat (Nyctalus noctula). Evolution 53:1247–1258

    Article  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: Convergence diagnosis and output analysis for MCMC R news 6:7–11

  • Porter CA, Primus AW, Hoffmann FG, Baker RJ (2010) Karyology of Five Species of Bats (Vespertilionidae, Hipposideridae, and Nycteridae) from Gabon with Comments on the Taxonomy of Glauconycteris Occasional Papers, Museum of Texas Tech University

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pryde MA, O’Donnell CFJ, Barker RJ (2005) Factors influencing survival and long-term population viability of New Zealand long-tailed bats (Chalinolobus tuberculatus): implications for conservation. Biol Conserv 126:175–185. doi:10.1016/j.biocon.2005.05.006

    Article  Google Scholar 

  • Pryde MA, Lettink M, O’Donnell CFJ (2006) Survivorship in two populations of long-tailed bats (Chalinolobus tuberculatus) in New Zealand. N Z J Zool 33:85–95

    Article  Google Scholar 

  • Puechmaille SJ et al (2011) The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat Commun 2:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Puechmaille SJ et al (2012) Genetic analyses reveal further cryptic lineages within the Myotis nattereri species complex. Mammal Biol Zeitschrift für Säugetierkunde 77:224–228. doi:10.1016/j.mambio.2011.11.004

    Article  Google Scholar 

  • Pujolar J, Bevacqua D, Capoccioni F, Ciccotti E, De Leo G, Zane L (2011) No apparent genetic bottleneck in the demographically declining European eel using molecular genetics and forward-time simulations. Conserv Genet 12:813–825

    Article  Google Scholar 

  • Rambaut A, Drummond A (2007) Tracer v1.4 MCMC Trace Analysis Package, Institute of Evolutionary Biology University of Edinburgh (Scotland) & Department of Computer Science University of Auckland (New Zealand) (2003–2007), http://beast.bio.ed.ac.uk/Tracer

  • Razgour O, Hanmer J, Jones G (2011) Using multi-scale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biol Conserv 144:2922–2930. doi:10.1016/j.biocon.2011.08.010

    Article  Google Scholar 

  • Razgour O et al (2014) Scale-dependent effects of landscape variables on gene flow and population structure in bats. Divers Distrib 20:1173–1185

    Article  Google Scholar 

  • Reiter G (2004) The importance of woodland for Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in Austria. Mammalia 68:403–410

    Article  Google Scholar 

  • Roehrs ZP, Lack JB, Van Den Bussche RA (2010) Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. J Mammal 91:1073–1092

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Sedgeley JA, O’Donnell CFJ (2004) Roost use by long-tailed bats in South Canterbury: Testing predictions of roost site selection in a highly fragmented landscape. N Z J Ecol 28:1–18

    Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Spong G, Hellborg L (2002) A near-extinction event in lynx: do microsatellite data tell the tale? Conservation Ecology 6:article 6

  • Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:154–166

    Article  CAS  Google Scholar 

  • Tournant P, Afonso E, Roué S, Giraudoux P, Foltête J-C (2013) Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol Conserv 164:39–49

    Article  Google Scholar 

  • Trewick SA (2000) Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Mol Ecol 9:269–281

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchison WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vander Wal E, Garant D, Festa-Bianchet M, Pelletier F (2013) Evolutionary rescue in vertebrates: evidence, applications and uncertainty. Philos Trans R Soc B Biol Sci 368:20120090

    Article  CAS  Google Scholar 

  • Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Mol Ecol 18:3548–3580

    Article  PubMed  Google Scholar 

  • Waters JM, Craw D (2006) Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Syst Biol 55:351–356

    Article  PubMed  Google Scholar 

  • Weyeneth N, Goodman SM, Stanley WT, Ruedi M (2008) The biogeography of Miniopterus bats (Chiroptera: Miniopteridae) from the Comoro Archipelago inferred from mitochondrial DNA. Mol Ecol 17:5205–5219. doi:10.1111/j.1365-294X.2008.03994.x

    Article  PubMed  Google Scholar 

  • Winnington A (1999) Ecology, genetics and taxonomy of peka peka (Chiroptera: Mystacina tuberculata and Chalinolobus tuberculatus). University of Otago, unpublished Ph.D. thesis

Download references

Acknowledgments

We sincerely thank two anonymous reviewers whose comments improved our manuscript. We thank Will Batson, Lucy Bridgman, Iris Broekema, Rhys Burns, Jo Carpenter, Emilie Chavel, Petrina Duncan, Nicola Fullerton, Carly Hill, Sarah Wills, Jono More, Dan Palmer, Tertia Thurley, Jason and Maddie Van de Wetering and Emma Williams for assisting with collecting tissue samples in the field and to Ina Roemer for support in the lab. This study formed part of the Department of Conservation (DOC) Science Investigation 4230 and tissue sampling was conducted under DOC Animal Ethics Committee permits AEC 220 and AEC 234 and using the DOC Tissue Sampling for Bats Standard Operating Procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena E. Dool.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dool, S.E., O’Donnell, C.F.J., Monks, J.M. et al. Phylogeographic-based conservation implications for the New Zealand long-tailed bat, (Chalinolobus tuberculatus): identification of a single ESU and a candidate population for genetic rescue. Conserv Genet 17, 1067–1079 (2016). https://doi.org/10.1007/s10592-016-0844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0844-3

Keywords

Navigation