Skip to main content
Log in

Population genetics of the speckled peacock bass (Cichla temensis), South America’s most important inland sport fishery

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Neotropics harbor the world’s most diverse freshwater fish fauna, with many of these species supporting major commercial, subsistence, or sport fisheries. Knowledge of population genetic structure is available for very few Neotropical fishes, thereby restricting management. To address this need, we examined population genetic variation in mtDNA control region sequences and twelve microsatellite loci in the speckled or barred peacock bass, Cichla temensis. Moderate and statistically significant genetic divergence among localities indicates that migration is low in this species, implying that populations inhabiting tributaries or even smaller spatial units should constitute management units. Analysis of molecular variance of mtDNA sequences identified six areas with largely exclusive haplotype clades, and a seventh area of high admixture, but major drainage basins harbored non-monophyletic haplotype groups. On the other hand, molecular variation in the microsatellite data was best explained by drainage basin and, subsequently, by the seven areas. Populations in these seven areas could be considered evolutionarily significant units (ESUs), and, therefore, we tested hypotheses explaining the discordant signal of mtDNA and microsatellite data using approximate Bayesian computation. This analysis indicated that the divergence of mtDNA clades preceded the divergence of contemporary ESUs across basins, with subsequent lineage sorting among ESUs due to reduced gene flow. Available genetic and ecological information indicates that C. temensis populations of major tributary rivers should be managed as separate stocks that likely are adapted to local environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amado MV, Farias IP, Hrbek T (2011) A molecular perspective on systematics, taxonomy and classification amazonian discus fishes of the genus symphysodon Int J Evol Biol

  • Bailey M (2011) The 10 biggest cichlids. Practical Fishkeeping

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13(4):729–744

    Article  PubMed  Google Scholar 

  • Batista JS, Alves-Gomes JA (2006) Phylogeography of Brachyplatystoma rousseauxii (Siluriformes—Pimelodidae) in the Amazon Basin offers preliminary evidence for the first case of “homing” for an Amazonian migratory catfish. Genet Mol Res 5:723–740

    PubMed  Google Scholar 

  • Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bird CE, Karl SA, Smouse PE, Toonen RJ (2011) Detecting and measuring genetic differentiation. In: Koenenmann S, Held C, Schubart C (eds) Phylogeography and population genetics in crustacea. CRC Press, Boca Raton, pp 31–55

    Chapter  Google Scholar 

  • Bloch ME, Schneider JG (1801) M. E. Blochii, Systema Ichthyologiae iconibus cx illustratum. Post obitum auctoris opus inchoatum absolvit, correxit, interpolavit Jo. Gottlob Schneider, Saxo. Berolini. In: Bloch ME, Schneider JG (eds) Systema ichthyologica, sumtibus austoris impressum et Bibliopolio Sanderiano Commissum

  • Cornuet JM, Veyssier J, Pudlo P, Dehne-Garcia A, Gautier M, Leblois R, Marin JM, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed Central  PubMed  Google Scholar 

  • Edwards SV, Beerli P (2000) Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farias IP, Torrico JP, Garcia-Davila C, Santos MCF, Hrbek T, Renno JF (2010) Are rapids a barrier for floodplain fishes of the Amazon basin? A demographic study of the keystone floodplain species Colossoma macropomum (Teleostei: characiformes). Mol Phylogenet Evol 56:1129–1135

    Article  PubMed  Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed Central  PubMed  Google Scholar 

  • Galtier N, Nabholz B, Glemin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    Article  CAS  PubMed  Google Scholar 

  • Genner MJ, Seehausen O, Lunt DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF (2007) Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 24:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Goulding M (1980) The fishes and the forest. Explorations in amazonian natural history. University of California Press, Berkeley

    Google Scholar 

  • Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25–30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7:e45170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hillborn R, Quinn TP, Schindler DE, Rogers DE (2003) Biocomplexity and fisheries sustainability. Proc Natl Acad Sci USA 100:6564–6568

    Article  Google Scholar 

  • Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ (2007) Evidence for time dependence of molecular rate estimates. Syst Biol 56:515–522

    Article  PubMed  Google Scholar 

  • Hoeinghaus DJ, Layman CA, Arrington DA, Winemiller KO (2003) Movement of Cichla species (Cichlidae) in a Venezuelan floodplain river. Neotrop Ichthyol 1:121–126

    Google Scholar 

  • Holley MH, Maceina MJ, Thomé-Souza M, Forsberg BR (2008) Analysis of the trophy sport fishery for the speckled peacock bass in the Rio Negro River, Brazil. Fish Manag Ecol 15:93–98

    Article  Google Scholar 

  • Hrbek T, Farias IP, Crossa M, Sampaio I, Porto JIR, Meyer A (2005) Population genetic structure of Arapaima gigas, world’s biggest freshwater fish: implications for conservation. Anim Conserv 8:297–308

    Article  Google Scholar 

  • Hrbek T, da Silva VMF, Dutra N, Gravena W, Martin A, Farias IP (2014) A new species of River Dolphin from Brazil or: how little do we know our biodiversity. PLoS one 9:e83623

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jepsen DB, Winemiller KO, Taphorn DC, Olarte DR (1999) Age structure and growth of peacock cichlids from rivers and reservoirs of Venezuela. J Fish Biol 55:433–450

    Article  Google Scholar 

  • Kalinowski ST (2002) How many alleles per locus should be used to estimate genetic distances? Heredity 88:62–65

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acid Res 33:511–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Layman CA, Winemiller KO (2004) Size-based responses of prey to piscivore exclusion in a species-rich neotropical river. Ecology 85:1311–1320

    Article  Google Scholar 

  • Macrander J, Willis SC, Gibson S, Orti G, Hrbek T (2012) Polymoprhic microsatellite loci for the Amazonian Peacock Basses, Cichla orinocensis and C. temensis, and cross-species amplification in other Cichla species. Mol Ecol Resour. doi:10.1111/j.1755-0998.2012.03173.x

    PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a gener- alized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Uppsala University, Program distributed by the author, Evol Biol Cent

    Google Scholar 

  • Pereira LHG, Foresti F, Oliveira C (2009) Genetic structure of the migratory catfish Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecol Freshw Fish 18:215–225

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of populations structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reis RE, Kullander SO, Ferraris CJ (2003) Checklist of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, p 729

    Google Scholar 

  • Reiss P, Able KW, Nunes MS, Hrbek T (2012) Color pattern variation in Cichla temensis (Perciformes: Cichlidae): Resolution based on morphological, molecular, and reproductive data. Neotrop Ichthyol 10:59–70

    Article  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • von Humboldt FHA (1821) Recherches sur les poissons fluviatiles de l’Amérique Équino. In: von Humboldt FHA, Valenciennes A (eds) Voyage de Humboldt et Bonpland, Deuxième partie. Observations de Zoologie et d’Anatomie comparée, Paris

  • Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the endangered species act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Willis SC, Nunes MS, Montana CG, Farias IP, Orti G, Lovejoy NR (2010) The Casiquiare River acts as a corridor between the Amazonas and Orinoco River basins: biogeographic analysis of the genus Cichla. Mol Ecol 19:1014–1030

    Article  CAS  PubMed  Google Scholar 

  • Willis SC, Macrander J, Farias IP, Orti G (2012) Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus Cichla) using multi-locus data. BMC Evol Biol 12:96

    Article  PubMed Central  PubMed  Google Scholar 

  • Winemiller KO (2001) Ecology of peacock cichlids (Cichla spp.) in Venezuela. J Aquaric Aquat Sci 9:93–112

    Google Scholar 

  • Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movement on tropical river food webs. J Fish Biol 53:267–296

    Article  Google Scholar 

  • Winemiller KO, Rose KA (1993) Why Do most fish produce so many tiny offspring. Am Nat 142:585–603

    Article  CAS  PubMed  Google Scholar 

  • Winemiller KO, Willis SC (2010) biogeography of the vaupes arch and Casiquiare River: barriers and passages between the Amazon and Orinoco. In: Albert J, Reis RE (eds) Historical biogeography of neotrpical freshwater fishes. University of California Press, Berkeley, pp 225–242

    Google Scholar 

  • Winemiller KO, López-Fernández H, Taphorn DC, Nico L, Barbarino-Duque A (2008) Fish assemblages of the Casiquiare River, a corridor and zoogeographical filter for dispersal between the Orinoco and Amazon basins. J Biogeogr 35:1551–1563

    Article  Google Scholar 

  • Yue G, Li Y, Chen F, Cho S, Lim LC, Orban L (2002) Comparison of three DNA marker systems for assessing genetic diversity in Asian arowana (Scleropages formosus). Electrophoresis 23:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Zaret TM, Paine RT (1973) Species introduction in a tropical lake. Sci (Wash DC) 182:449–455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate all those who contributed tissues or assisted in collection for this project, in particular V. Machado, N. Meliciano, and D. Ribeiro. Tissues were collected, stored, and utilized under permits from the Ministerio de Ambiente y Recursos Naturales (MARN) in Venezuela and Instituto Chico Mendes de Conservação da Biodiversidade (IBAMA/ICMBio) in Brazil (permit for collection No. 031/2003, 045/IBAMA, 148/2006- DIFAP/IBAMA, permit for access to genetic resources in Brazil No. 034/2005/IBAMA, and Permanent IBAMA License 11325– 1/2007). We acknowledge funding from the US National Science Foundation, (OISE DDEP to G.Orti and S. Willis), George Washington University, UNL Research Cluster, International Foundation for Science, CNPq (CNPq/PPG7 (557090/2005–2009), (554057/2006–2009)), and FAPEAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart C. Willis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Historical scenarios tested with DIY-ABC. Parameter prior ranges are shown, and below are constraints on divergence times. Terminal branch colors correspond to ESUs in Fig. 1 (TIFF 341 kb)

Fig. S2

Haplotype network of mtCR sequences. Color corresponds to regional evolutionary significant units. Each line represents a single mutation, except where indicated by cross-hatched lines. A missing haplotype was indicated by an unfilled circle (TIFF 309 kb)

Fig. S3

Principal components analysis of genotypes of twelve microsatellite loci. Colors and symbols correspond to inferred ESUs and localities within ESUs respectively (PDF 58 kb)

Fig. S4

Principal components analysis of simulated and observed vectors for DIYABC scenarios 1 and 2. A) Vectors simulated from the prior distribution of both scenarios. B) Vectors simulated from the prior (unfilled) and posterior (filled) of scenario 1. C) Vectors simulated from the prior (unfilled) and posterior (filled) of scenario 2 (TIFF 385 kb)

Fig. S5

Principal components analysis of simulated and observed vectors for DIYABC scenarios 2 and 3. A) Vectors simulated from the prior distribution of both scenarios. B) Vectors simulated from the prior (unfilled) and posterior (filled) of scenario 2. C) Vectors simulated from the prior (unfilled) and posterior (filled) of scenario 3 (TIFF 401 kb)

Fig. S6

Posterior probability over different subsets of simulated vectors closest to the observed vector. Top panels: scenarios 1 and 2. Lower panels: scenarios 2 and 3 (TIFF 127 kb)

Table S1

Values of RST (Slatkin, 1995) below diagonal and FST′ (Miermans, 2006) above diagonal among localities. Locality codes follow Table 1 (XLSX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willis, S.C., Winemiller, K.O., Montaña, C.G. et al. Population genetics of the speckled peacock bass (Cichla temensis), South America’s most important inland sport fishery. Conserv Genet 16, 1345–1357 (2015). https://doi.org/10.1007/s10592-015-0744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0744-y

Keywords

Navigation