Skip to main content

Advertisement

Log in

Moisture variables, and not temperature, are responsible for climate filtering and genetic bottlenecks in the South African endemic terrestrial mollusc Prestonella (Orthalicoidea)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Non-vagile taxa such as terrestrial molluscs are susceptible to stochastic environmental events that can cause local extinctions or population declines, and extinctions of terrestrial mollusc species are among the highest documented. Many terrestrial snails are habitat specialists, and genetic studies using both allozyme and DNA sequence data have indicated that many species contain substantial and geographically structured genetic variation. In this study, we assess the genetic variation within two species of the rare terrestrial snail genus Prestonella, an inhabitant of rocky areas along water courses in the southern Great Escarpment of South Africa, and correlate genetic diversity to climatic variables. DNA sequence data from mitochondrial 16S rDNA and partial cytochrome oxidase I genes indicate that neither species is monophyletic, and that populations are deeply divergent, even over distances of a few hundred metres. Principal components anaylsis of climatic variables derived from two databases indicates that genetic diversity of the populations is correlated to moisture-related climatic variables. Populations with little or no diversity occur in more arid regions, and are thus most at risk from any future climatic changes that would increase aridification. These moisture variables are thus potent drivers of genetic bottlenecks and may have resulted in historical climate filtering or limitation of the distribution of these species. Temperature appears to be a less important variable, a finding supported by physiological data based on heart rates that show that death occurs only at temperatures far higher than found in their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arad Z, Mizrahi T, Goldenberg S, Heller J (2010) Natural annual cycle of heat shock protein expression in land snails: desert versus Mediterranean species of Sphincterochila. J Exp Biol 213:3487–3495

    PubMed  CAS  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154

    PubMed  CAS  Google Scholar 

  • Bradley BP (1978) Increase in range of temperature tolerance by acclimation in the copepod Eurytemora affinis. Biol Bull 154:177–187

    Google Scholar 

  • Breure ASH, Romero PE (2012) Support and surprises: molecular phylogeny of the land snail superfamily Orthalicoidea using a three-locus gene analysis with a divergence time analysis and ancestral area reconstruction. Arch Molluskenkunde 141:1–20

    Google Scholar 

  • Chase BM, Meadows ME (2007) Late quaternary dynamics of southern Africa’s winter rainfall zone. Earth Sci Rev 84:103–138

    Google Scholar 

  • Chiba S (1999) Accelerated evolution of land snails Mandarina in the oceanic Bonin Islands: evidence from mitochondrial DNA sequences. Evolution 53:460–471

    CAS  Google Scholar 

  • Clark VR, Barker NP, Mucina L (2009) The Sneeuberg: a new centre of floristic endemism on the great escarpment, South Africa. S Afr J Bot 75:196–238

    Google Scholar 

  • Clark VR, Barker NP, Mucina L (2011) The great escarpment of southern Africa—a new frontier for biodiversity exploration. Biodivers Conserv 20:2543–2561

    Google Scholar 

  • Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261

    PubMed  CAS  Google Scholar 

  • Davison A, Chiba S (2008) Contrasting response to Pleistocene climate change byground-living and arboreal Mandarina snails from the oceanic Hahajima archipelago. Philos Trans R Soc Lond B 363:3391–3400

    Google Scholar 

  • Davison A, Blackie RLE, Scothern GP (2009) DNA barcoding of stylommatophoran land snails: a test of existing sequences. Mol Ecol Resour 9:1092–1101

    PubMed  CAS  Google Scholar 

  • DEA (2011) South Africa’s Second National Communication under the United Nations Framework Convention on Climate Change (draft). Department of Environmental Affairs, Republic of South Africa, Pretoria

  • Donald KM, Kennedy M, Spencer HG (2005) Cladogenesis as the result of long- distance rafting events in south pacific topshells (Gastropoda: Trochidae). Evolution 59:1701–1711

    PubMed  CAS  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    PubMed  CAS  Google Scholar 

  • Efford MG (2000) Consumption of amphipods by the New Zealand land snail Wainuia urnula (Pulmonata: Rhytididae). J Mollus Stud 66:45–52

    Google Scholar 

  • Engelbrecht F, McGregor J, Engelbrecht C (2009) Dynamics of the conformal-cubic atmospheric model projected climate-change signal over southern Africa. Int J Clim 29:1013–1033

    Google Scholar 

  • Engelbrecht C, Engelbrecht F, Dyson L (2013) High-resolution model-projected changes in mid-tropospheric closed-lows and extreme rainfall events over southern Africa. Int. J. Clim. 33:173–187

    Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Change Biol 8:679–693

    Google Scholar 

  • Fearon JL (2011) The genetic diversity and conservation biology of the rare terrestrial snail genus Prestonella. MSc thesis, Rhodes University

  • Fiorentino V, Manganelli G, Giusti F (2008) Multiple scale patterns of shell and anatomy variability in land snails: the case of the Sicilian Marmorana (Gastropoda: Pulmonata, Helicidae). Biol J Linn Soc 93:359–370

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase sub-unit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Gaston KJ (1998) Rarity as double jeopardy. Nature 394:229–230

    CAS  Google Scholar 

  • Gerlach J (2006) Pachnodus velutinus. In: IUCN 2011. IUCN Red List of threatened species. Version 2011.1

  • Gerlach J (2007) Short-term climate change and the extinction of the snail Rhachistia aldabrae (Gastropoda: Pulmonata). Biol Lett 3:581–584

    PubMed  Google Scholar 

  • Goodacre SL (2001) Genetic variation in a Pacific Island land snail: population history versus current drift and selection. P Roy Soc Lond B 268:121–126

    CAS  Google Scholar 

  • Goodacre SL, Wade CM (2001) Molecular evolutionary relationships between partulid land snails of the Pacific. P Roy Soc Lond B 268:1–7

    CAS  Google Scholar 

  • Hayashi M, Chiba S (2000) Intraspecific diversity of mitochondrial DNA in the land snail Euhadra peliomphala (Bradybaenidae). Biol J Linn Soc 70:391–401

    Google Scholar 

  • Herbert DG (2000) Dining on diplopods: remarkable feeding behaviour in chlamydephorid slugs (Mollusca: Gastropoda). J Zool 251:1–5

    Google Scholar 

  • Herbert DG (2007) Revision of the genus Prestonella (Mollusca: Gastropoda: Orthalicoidea: Bulimulidae s.l.): a distinctive component of the African land snail fauna. Afr Invertebr 48:1–19

    Google Scholar 

  • Herbert DG, Kilburn RN (2004) Field guide to the land snails and slugs of eastern South Africa. Natal Museum, Pietermaritzburg

    Google Scholar 

  • Herbert DG, Mitchell A (2009) Phylogenetic relationships of the enigmatic land snail genus Prestonella—the missing African element in the Gondwanan superfamily Orthalicoidea (Mollusca: Stylommatophora). Biol J Linn Soc 96:203–221

    Google Scholar 

  • Herbert DG, Moussalli A (2010) Revision of the larger cannibal snails (Natalina s.l.) of southern Africa—Natalina s.s., Afrorhytida and Capitina (Mollusca: Gastropoda: Rhytididae). Afr Invertebr 51:1–132

    Google Scholar 

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newslett 127:15–19

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Holland BS, Cowie RH (2007) A geographic mosaic of passive dispersal: population structure in the endemic Hawaiian amber snail Succinea caduca (Mighels, 1845). Mol Ecol 16:2422–2435

    PubMed  CAS  Google Scholar 

  • Holland BS, Hadfield MG (2002) Islands within an island: phylogeography and conservation genetics of the endangered Hawaiian tree snail Achatinella mustelina. Mol Ecol 11:365–375

    PubMed  CAS  Google Scholar 

  • Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315

    PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MR BAYES: Bayesian inference of phylogenetic trees. Bioinfomatics 17:754–755

    CAS  Google Scholar 

  • Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier, 1875). P Natl Acad Sci USA 99:6112–6117

    CAS  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    PubMed  Google Scholar 

  • Janks MR, Barker NP (2013) Using Mark-recapture to provide population census data for use in Red Listing of invertebrates: the rare terrestrial snail Prestonella bowkeri as a case study. Biodivers Conserv 22:1609–1621. doi:10.1007/s10531-013-0495-3

  • Jensen GC, Armstrong DA (1991) Intertidal zonation among congeners: factors regulating distribution of porcelain crabs Petrolisthes spp. (Anomura: Porcelanidae). Ecol Prog Ser 73:47–60

    Google Scholar 

  • Johnson MS, O’Brien EK, Fitzpatrick JJ (2010) Deep, hierarchical divergence of mitochondrial DNA in Amplirhagada land snails (Gastropoda: Camaenidae) from the Bonaparte Archipelago, Western Australia. Biol J Linn Soc 100:141–153

    Google Scholar 

  • Johnson MS, Hamilton ZR, Teale R, Kendrick PG (2012) Endemic evolutionary radiation of Rhagada land snails (Pulmonata: Camaenidae) in a continental archipelago in northern Western Australia. Biol J Linn Soc 106:316–327

    Google Scholar 

  • Jump AS, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    PubMed  Google Scholar 

  • Kay EA (1995) Which Molluscs for Extinction? IUCN Red List of threatened species—a global species assessment. Occasional Paper of the IUCN Species Survival Commission No.9. International Union for Conservation of Nature, Gland, Switzerland

  • Kingsolver JG, Huey RB (1998) Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am Zool 38:545–560

    Google Scholar 

  • Layne JR, Manis ML, Claussen DL (1985) Seasonal variation in the time course of thermal acclimation in the crayfish. Freshw Invertebr Biol 4:98–104

    Google Scholar 

  • Levins R (1969) Thermal acclimation and heat resistance in Drosophila species. Am Nat 103:483–499

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    PubMed  CAS  Google Scholar 

  • Lydeard C, Cowie RH, Ponder WF et al (2004) The global decline of nonmarine mollusks. Bioscience 54:321–330

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution Version 3. Sinauer Associates, Sunderland

    Google Scholar 

  • McCain CM, Colwell RK (2011) Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett 14:1236–1245

    PubMed  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Google Scholar 

  • Meads MJ, Walker KJ, Elliott GP (1984) Status, conservation, and management of the land snails of the genus Powelliphanta (Mollusca: Pulmonata). New Zeal J Zool 11:277–306

    Google Scholar 

  • Measey GJ, Tolley KA (2011) Investigating the cause of the disjunct distribution of Amietophrynus pantherinus, the endangered South African western leopard toad. Conserv Genet 12:61–70

    Google Scholar 

  • Mizrahi T, Heller J, Goldenberg S, Arad Z (2012) Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats. Cell Stress Chaperones 17:523–527

    PubMed  CAS  Google Scholar 

  • Moritz C (1994) Defining evolutionary significant units’ for conservation. Trends Evol Ecol 9:373–375

    CAS  Google Scholar 

  • Morley NJ, Lewis JW (2008) The influence of climatic conditions on long-term changes in the helminth fauna of terrestrial molluscs and the implications for parasite transmission in southern England. J Helminth 82:325–335

    PubMed  CAS  Google Scholar 

  • Moussalli A, Herbert DG, Stuart-Fox D (2009) A phylogeny of the cannibal snails of southern Africa, genus Natalina sensu lato (Pulmonata: Rhytididae): Assessing concordance between morphology and molecular data. Mol Phylogenet Evol 52:167–182

    PubMed  CAS  Google Scholar 

  • Nevo E (1988) Genetic diversity in nature: patterns and theory. Evol Biol 23:212–242

    Google Scholar 

  • Nevo E (1998) Molecular evolution and ecological stress at global, regional, and local scales: the Israeli perspective. J Exp Zool 282:95–119

    CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. P Nat Acad Sci USA 98:6233–6240

    CAS  Google Scholar 

  • Nevo E (2006) “Evolution Canyon”: a microcosm of life’s evolution focusing on adaptation and speciation. Isr J Ecol Evol 52:485–506

    Google Scholar 

  • Nevo E (2009) Evolution in action across life at “Evolution Canyons”. Israel, Trends in Evol Biol 1

    Google Scholar 

  • Nevo E, Yang SY (1979) Genetic diversity and climatic determinants of tree frogs in Israel. Oecologia 41:47–53

    Google Scholar 

  • Nevo E, Yang SY (1982) Genetic diversity and ecological relationships of marsh frog populations in Israel. Theor Appl Genet 63:317–330

    Google Scholar 

  • Nevo E, Bar-El C, Bar Z, Beiles A (1981) Genetic structure and climatic correlates of desert landsnails. Oecologia 48:199–208

    Google Scholar 

  • Nevo E, Bar-El C, Bar Z, Beiles A, Tom-Tov Y (1982) Adaptive microgeographic differentiation of allozyme polymorphism in landsnails. Genetica 59:61–67

    Google Scholar 

  • Nicolai A, Vernon P, Lenz R, Le Lanic J, Briand V, Charrier M (2013) Well wrapped eggs: effects of egg shell structure on heat resistance and hatchling mass in the invasive land snail Cornu aspersum. J Exp Zool 319A:63–73

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Errea MP, Martínez JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Change 17:420–428

    Google Scholar 

  • Nylander JAA (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Ozawa T, Okamoto K (1993) Implications of molecular phylogeny: analysis of mitochondrial DNA in Umbonium. Chikyu 15:589–595

    Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates Inc., Sunderland, Massachusetts, pp 205–247

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    PubMed  CAS  Google Scholar 

  • Parsons PA (1995) Evolutionary response to drought stress: conservation implications. Biol Cons 74:21–27

    Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    PubMed  Google Scholar 

  • Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution 56:1776–1788

    PubMed  Google Scholar 

  • Pfenninger M, Bahl A, Streit B (1996) Isolation by distance in a population of a small land snail Trochoidea geyeri: evidence from direct and indirect methods. P Roy Soc Lond B 263:1211–1217

    Google Scholar 

  • Pfenninger M, Posada D, Magnin F (2003) Evidence for survival of Pleistocene climatic changes in Northern refugia by the land snail Trochoidea geyeri (Soós 1926) (Helicellinae, Stylommatophora). Evol Biol 3:8

    Google Scholar 

  • Pfenninger M, Salinger M, Haun T, Feldmeyer B (2011) Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail Radix balthica (Pulmonata, Basommatophora). BMC Evol Biol 12:e224

    Google Scholar 

  • Pinceel J, Jordaens K, Backeljau T (2005) Extreme mtDNA divergences in a terrestrial slug (Gastropoda, Pulmonata, Arionidae): accelerated evolution, allopatric divergence and secondary contact. J Evol Biol 18:1264–1280

    PubMed  CAS  Google Scholar 

  • Ponder WF, Clark GA (1990) A radiation of hydrobiid snails in threatened artesian springs in western Queensland. Records Aust Museum 42:301–363

    Google Scholar 

  • Portner H-O (2002) Climate variations and the physiological basis of temperature dependent biogeography systematic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Phys A 132:739–761

    CAS  Google Scholar 

  • Price BW, Barker NP, Villet MH (2007) Patterns and processes underlying evolutionary significant units in the Platypleura stridula L. species complex (Hemiptera: Cicadidae) in the Cape Floristic Region. South Africa Mol Ecol 16:2574–2588

    CAS  Google Scholar 

  • Rambaut A (2006) FigTree v .3.1

  • Rambaut A, Drummond AJ (2007) Tracer v1.4

  • Regnier CR, Fontaine B, Bouchet P (2009) Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv Biol 23:1214–1221

    PubMed  Google Scholar 

  • Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–253

    PubMed  Google Scholar 

  • Ripplinger J, Sullivan J (2007) Does choice in model selection affect maximum likelihood analysis? Syst Biol 57:76–85

    Google Scholar 

  • Rising TL, Armitage KB (1969) Acclimation to temperature by the terrestrial gastropods, Limax maximus and Philomycus carolinianus: oxygen consumption and temperature preference. Comp Biochem Phys 30:1091–1114

    CAS  Google Scholar 

  • Root T, Price JT, Hall KR, Schneider SH, Rosenweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    PubMed  CAS  Google Scholar 

  • Ross TK (1999) Phylogeography and conservation genetics of the Iowa Pleistocene snail. Mol Ecol 8:1363–1373

    PubMed  CAS  Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Google Scholar 

  • Sax DF, Smith KF, Thompson AR (2009) Managed relocation: a nuanced evaluation is needed. Trends Ecol Evol 24:472–473

    PubMed  Google Scholar 

  • Schlaepfer MA, Helenbrook WD, Searing KB, Shoemaker KT (2009) Assisted colonization: evaluating contrasting management actions (and values) in the face of uncertainty. Trends Ecol Evol 24:471–472

    PubMed  Google Scholar 

  • Schulze RE (1997) South African atlas of agrohydrology and climatology. Water Research Commission, Pretoria, Report TT82/96, University of Natal, Pietermaritzburg

  • Schwartz MW, Hellman JJ, McLachlan JS (2009) The precautionary principle in managed relocation is misguided advice. Trends Ecol Evol 24:47

    Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclamatory adjustments of thermal limits. Front Zool 2:1–9

    PubMed  Google Scholar 

  • Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65

    PubMed  CAS  Google Scholar 

  • Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of eastern pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Phys Biochem Zool 73:200–208

    CAS  Google Scholar 

  • Swart BL, Tolley KA, Matthee CA (2009) Climate change drives speciation in the Southern Rock Agama (Agama atra) in the Cape Floristic Region, South Africa. J Biogeogr 36:78–87

    Google Scholar 

  • Swofford DL (2002) PAUP. Phylogenetic analysis using parsimony (* and Other Methods), v. 4.0 beta 10. Sinauer Associates, Sunderland

  • Thomaz D, Guiller A, Clarke B (1996) Extreme divergence of mitochondrial DNA within species of Pulmonate land snails. P Roy Soc Lond B 263:363–368

    CAS  Google Scholar 

  • Tolley KA, Burger M, Turner AA, Matthee CA (2006) Biogeographic patterns and phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity hotspot. Mol Ecol 15:781–793

    PubMed  Google Scholar 

  • Tolley KA, Braae A, Cunningham M (2010a) Phylogeography of the clicking stream frog Strongylopus grayii (Anura: Pyxicephalidae) reveals cryptic divergence across climatic zones in an abundant and widespread taxon. Afr J Herpetol 59:17–32

    Google Scholar 

  • Tolley KA, De Villiers AL, Cherry MI, Measey GJ (2010b) Isolation and high genetic diversity in dwarf mountain toads (Capensibufo) from South Africa. Biol J Linn Soc 100:822–834

    Google Scholar 

  • Tsukuda H, Ogoshi K (1978) Heat and cold tolerance of the planarian, Dugesia japonica, in relation to acclimation temperature. Nippon Dobutsugaku Iho 51:70–78

    Google Scholar 

  • Van Damme D, Ghamizi M (2007) Pseudamnicola desertorum. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.1

  • Van Jaarsveld AS, Chown SL (2001) Climate change and its impacts in South Africa. Trends Ecol Evol 16:13–14

    Google Scholar 

  • Van Niekerk A, Joubert SJ (2011) Input variable selection for interpolating high resolution climate surfaces for the Western Cape. Water SA 37:271–279

    Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Amer Nat 99:377–390

    Google Scholar 

  • Vitt P, Havens K, Hoegh-Guldberg O (2009) Assisted migration: part of an integrated conservation strategy. Trends Ecol Evol 24:473–474

    PubMed  Google Scholar 

  • Wethey DS (1983) Geographic limits and local zonation: the barnacles Semibalanus (Balanus) and Chthamalus in New England (USA). Biol Bull 165:330–341

    Google Scholar 

Download references

Acknowledgments

We thank Kevin Cole, Linda Davis, Ralph Clark, John Midgley, Garreth Keevey Stef Kriel, Phillip Foulkes and especially Mary Cole who collected from a number of sites including the Fort Fordyce Reserve (under Eastern Cape parks permit number RA 0063). Christopher McQuaid and Tshifhiwa Given Matumba are thanked for allowing access to, and providing training in, the use of the equipment to measure heart rates, and Sarah Radloff for assistance with statistical matters. The South African National Parks gave us permission to collect in Mountain Zebra National Park and the Karoo National Park, and provided logistical support. Funding for this research was provided by the National Research Foundation of South Africa (Grant Unique Number GUN 2069059 (NPB) and 61261 (DGH)) in the form of a bursary to JLF and running Grant funding to NPB. In addition, funding from the South African National Biodiversity Institute (SANBI) and the Norwegian Agency for Development Cooperation (NORAD) is gratefully acknowledged. We thank two reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Barker.

Glossary

Haplotype

A particular DNA sequence from a specific region (in this instance of the mitochondrial genome) found in one or more individuals

Haplotype diversity

A measure of the uniqueness of a particular haplotype in a given population and is a function of its frequency

Nucleotide diversity

The degree of polymorphism within a population assessed as the number of nucleotide (base pair) differences between two haplotypes divided by the number of nucleotides under comparison

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, N.P., Fearon, J.L. & Herbert, D.G. Moisture variables, and not temperature, are responsible for climate filtering and genetic bottlenecks in the South African endemic terrestrial mollusc Prestonella (Orthalicoidea). Conserv Genet 14, 1065–1081 (2013). https://doi.org/10.1007/s10592-013-0496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0496-5

Keywords

Navigation