Skip to main content

Advertisement

Log in

Population structure and genetic diversity of greater sage-grouse (Centrocercus urophasianus) in fragmented landscapes at the northern edge of their range

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Range-edge dynamics and anthropogenic fragmentation are expected to impact patterns of genetic diversity, and understanding the influence of both factors is important for effective conservation of threatened wildlife species. To examine these factors, we sampled greater sage-grouse (Centrocercus urophasianus) from a declining, fragmented region at the northern periphery of the species’ range and from a stable, contiguous core region. We genotyped 2,519 individuals at 13 microsatellite loci from 104 leks in Alberta, Saskatchewan, Montana, and Wyoming. Birds from northern Montana, Alberta, and Saskatchewan were identified as a single population that exhibited significant isolation by distance, with the Milk River demarcating two subpopulations. Both subpopulations exhibited high genetic diversity with no evidence that peripheral regions were genetically depauperate or highly structured. However, river valleys and a large agricultural region were significant barriers to dispersal. Leks were also composed primarily of non-kin, rejecting the idea that leks form because of male kin association. Northern Montana sage-grouse are maintaining genetic connectivity in fragmented and northern peripheral habitats via dispersal through and around various forms of fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aars J, Dallas JF, Piertney SB et al (2006) Widespread gene flow and high genetic variability in populations of water voles Arvicola terrestris in patchy habitats. Mol Ecol 15:1455–1466

    Article  PubMed  CAS  Google Scholar 

  • Aldridge CL, Brigham RM (2003) Distribution, abundance, and status of the greater sage-grouse, Centrocercus urophasianus, in Canada. Can Field-Nat 117:25–34

    Google Scholar 

  • Antunes A, Faria R, Johnson WE et al (2006) Life on the edge: the long-term persistence and contrasting spatial genetic structure of distinct brown trout life histories at their ecological limits. J Hered 97:193–205

    Article  PubMed  Google Scholar 

  • Beck JL, Reese KP, Connelly JW, Lucia MB (2006) Movements and survival of juvenile greater sage-grouse in southeastern Idaho. Wildlife Soc B 34:1070–1078

    Article  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bergl RA, Vigilant L (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). Mol Ecol 16:501–516

    Article  PubMed  Google Scholar 

  • Bouzat JL, Johnson K (2004) Genetic structure among closely spaced leks in a peripheral population of lesser prairie-chickens. Mol Ecol 13:499–505

    Article  PubMed  Google Scholar 

  • Boyko AR, Gibson RM, Lucas JR (2004) How predation risk affects the temporal dynamics of avian leks: greater sage grouse versus golden eagles. Am Nat 163:154–165

    Article  PubMed  Google Scholar 

  • Bush KL (2008) A pressure-operated drop net for capturing Greater Sage-Grouse. J Field Ornithol 79:64–70

    Article  Google Scholar 

  • Bush KL (2009) Genetic diversity and paternity analysis of endangered greater Canadian sage-grouse (Centrocercus urophasianus). Ph.D. Dissertation, University of Alberta

  • Bush KL, Vinsky MD, Aldridge CL, Paszkowski CA (2005) A comparison of sample types varying in invasiveness for use in DNA sex determination in an endangered population of greater sage-grouse (Centrocercus urophasianus). Conserv Genet 6:867–870

    Article  Google Scholar 

  • Bush KL, Aldridge CL, Carpenter JE et al (2010) Birds of a feather do not always lek together: genetic diversity and kinship structure of greater sage-grouse (Centrocercus urophasianus) in Alberta. Auk 127:343–353

    Article  Google Scholar 

  • Caizergues A, Dubois S, Mondor G, Rasplus J-Y (2001) Isolation and characterisation of microsatellite loci in black grouse (Tetrao tetrix). Mol Ecol Notes 1:36–38

    Article  CAS  Google Scholar 

  • Caizergues A, Rätti O, Helle P et al (2003a) Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes. Mol Ecol 12:2297–2305

    Article  PubMed  Google Scholar 

  • Caizergues A, Bernard-Laurent A, Brenot JF et al (2003b) Population genetic structure of rock ptarmigan Lagopus mutus in Northern and Western Europe. Mol Ecol 12:2267–2274

    Article  PubMed  CAS  Google Scholar 

  • Casgrain P, Legendre P (2001) The R package for multivariate and spatial analysis, version 4.0 user’s manual. http://www.fas.umontreal.ca/BIOL/legendre. Department des Sciences biologiques, Université de Montreal

  • Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86

    Article  PubMed  CAS  Google Scholar 

  • Cheng HH, Levin I, Vallejo RL et al (1995) Development of a genetic map of the chicken with high-utility markers. Poultry Sci 74:1855–1874

    CAS  Google Scholar 

  • Connelly JW, Knick ST, Schroeder MA, Stiver SJ (2004) Conservation assessment of greater Sage-grouse and Sagebrush habitats. Western Association of Fish and Wildlife Agencies, Unpublished Report, Cheyenne, Wyoming

  • Dalke PD, Pyrah DB, Stanton DC, Crawford JE, Schlatterer EF (1963) Ecology, productivity and management of Sage grouse in Idaho. J Wild Manage 27:819–841

    Google Scholar 

  • Dunn PO, Braun CE (1985) Natal dispersal and lek fidelity of sage-grouse. Auk 102:621–627

    Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2006) arlequin ver 3.1: an integrated software package for population genetic analysis. Computational and Molecular Population Genetics Lab, University of Berne, Switzerland

    Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Galbusera P, Githiru M, Lens L, Matthysen E (2004) Genetic equilibrium despite habitat fragmentation in an Afrotropical bird. Mol Ecol 13:1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Gibson RM (1996) Female choice in sage grouse: the roles of attraction and active comparison. Behav Ecol Sociobiol 39:55–59

    Article  Google Scholar 

  • Gibson RM, Pires D, Delaney KS, Wayne RK (2005) Microsatellite DNA analysis shows that greater sage grouse leks are not kin groups. Mol Ecol 14:4453–4459

    Article  PubMed  CAS  Google Scholar 

  • Giesen KM, Schoenberg TJ, Braun CE (1982) Methods for trapping sage grouse in Colorado. Wildlife Soc B 10:223–231

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html. Institute of Ecology, Lausanne

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (1999) Post-glacial recolonization of European Biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Höglund J, Alatalo RV (1995) Leks. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Johansson M, Primmer CR, Merilä J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983

    Article  PubMed  CAS  Google Scholar 

  • Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie chickens. Mol Ecol 12:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Johnson JA, Bellinger MR, Toepfer JE et al (2004) Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 13:2617–2630

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35

    Article  PubMed  Google Scholar 

  • Kokko H, Lindström J (1996) Kin selection and the evolution of leks: whose success do young males maximize? Proc R Soc Lond B 263:919–923

    Article  Google Scholar 

  • Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760

    Article  Google Scholar 

  • Lungle K, Pruss S (2008) Recovery strategy for greater sage-grouse (Centrocercus urophasianus urophasianus) in Canada. Species at Risk Act recovery strategy series, Parks Canada Agency, Unpublished report, Ottawa, Ontario

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Martínez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486

    Article  PubMed  Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341

    Article  Google Scholar 

  • Oyler-McCance SJ, Taylor SE, Quinn TW (2005a) A multilocus population genetic survey of the greater sage-grouse across their range. Mol Ecol 14:1293–1310

    Article  PubMed  CAS  Google Scholar 

  • Oyler-McCance SJ, St. John J, Taylor SE et al (2005b) Population genetics of Gunnison sage-grouse: implications for management. J Wildl Manage 69:630–637

    Article  Google Scholar 

  • Peacock MM, Ray C (2001) Dispersal in pikas (Ochotona princes): combining genetic and demographic approaches to reveal spatial and temporal patterns. In: Clobert J, Danchin E, Dhondt A, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 44–56

    Google Scholar 

  • Peakall R, Smouse PE (2001) genalex version 5.1. Genetic analysis in Excel. Population genetic software for teaching and research. http://www.anu.edu.au/BoZo/GenAlEx. Australian National University, Canberra, Australia

  • Piertney SB, Dallas JF (1997) Isolation and characterization of hypervariable microsatellites in the red grouse. Lagopus lagopus scoticus. Mol Ecol 6:93–95

    Article  PubMed  CAS  Google Scholar 

  • Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop version 3.1d: population genetics software for exact test and ecumenism. J Hered 86:248–249

    Google Scholar 

  • Sargarin RD, Gaines SD (2002) The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–147

    Article  Google Scholar 

  • Sauls H (2006) The role of selective foraging and cecal microflora in sage-grouse nutritional ecology. MSc. Thesis, University of Montana

  • Schroeder MA, Braun CE (1991) Walk-in traps for capturing greater prairie-chickens on leks. J Field Ornithol 62:378–385

    Google Scholar 

  • Schroeder MA, Braun CE (1993) Partial migration in a population of greater prairie-chickens in northeastern Colorado. Auk 110:21–28

    Google Scholar 

  • Schroeder MA, Aldridge CL, Apa AD et al (2004) Distribution of sage-grouse in North America. Condor 106:363–376

    Article  Google Scholar 

  • Segelbacher G, Storch I (2002) Capercaillie in the Alps: genetic evidence of metapopulation structure and population decline. Mol Ecol 11:1669–1677

    Article  PubMed  CAS  Google Scholar 

  • Segelbacher G, Paxton RJ, Steinbrueck G, Trontelj P, Storch I (2000) Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES). Mol Ecol 9:1934–1935

    Article  PubMed  CAS  Google Scholar 

  • Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780

    Article  PubMed  CAS  Google Scholar 

  • Semple K, Wayne RK, Gibson RM (2001) Microsatellite analysis of female mating behaviour in lek-breeding sage grouse. Mol Ecol 10:2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Sherman PW (1999) Birds of a feather lek together. Nature 401:119–120

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Taylor SE, Oyler-McCance SJ, Quinn TW (2003) Isolation and characterization of microsatellite loci in greater sage-grouse (Centrocercus urophasianus). Mol Ecol Notes 3:262–264

    Article  CAS  Google Scholar 

  • Van Den Bussche RA, Hoofer SR, Wiedenfeld DA et al (2003) Genetic variation within and among fragmented populations of lesser prairie-chickens (Tympanuchus pallidicinctus). Mol Ecol 12:675–683

    Article  Google Scholar 

  • Veit ML, Robertson RJ, Hamel PB, Friesen VL (2005) Population genetic structure and dispersal across a fragmented landscape in cerulean warblers. Conserv Genet 6:159–174

    Article  Google Scholar 

  • Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645

    Article  Google Scholar 

  • Wang J (2004a) Sibship reconstruction for genetic data with typing errors. Genetics 166:1963–1979

    Article  PubMed  Google Scholar 

  • Wang J (2004b) Application of the one-migrant-per-generation rule to conservation and management. Conserv Biol 18:332–343

    Article  Google Scholar 

  • Wiley RH (1973) Territoriality and non-random mating in the sage grouse, Centrocercus urophasianus. Anim Behav Mono 6:87–169

    Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • Wright S (1964) Stochastic processes in evolution. In: Garland J (ed) Stochastic models in medicine and biology. University of Wisconsin Press, Madison, pp 199–241

    Google Scholar 

Download references

Acknowledgments

We thank the following agencies for molted feather collection: Alberta Fish and Wildlife, Alberta Conservation Association, Saskatchewan Environment, Parks Canada, Montana BLM, and Montana FWP. We thank Pat Fargey, Sue McAdam, Al Rosgaard, Kelvin Johnson, Craig Miller, Mark Sullivan, Fritz Prellwitz, and Randy Matchett for coordinating sample collection. We thank Jennifer Carpenter for 2005/6 Alberta sample collection. We thank Tara Cessford, Brad Necyk, and Andrew Wong for sample preparation, Corey Davis, Lindsey Carmichael, Bryan Stevens, and Greg Wilson for technical and statistical advice, and Curtis Strobeck for lab space in 2003/4. We thank Michael Schroeder for discussions on grouse dispersal and Donna Bush, Robert Gibson, Randy Matchett, Tom Rinkes, and four anonymous reviewers for comments on earlier drafts. This research was funded by WWF Canada ESRF, ACA Grant Eligible Conservation Fund, Parks Canada SARRAEF, the Nature Conservancy, ACA and ACCRU Challenge Grants in Biodiversity, ASRPWF Development Initiatives Program, Montana BLM, WWF USA, APWS Leslie Tassel Fund, SCO Taverner Award, and POPWA. Krista Bush was supported by NSERC Postgraduate Doctoral and Masters Scholarships, Walter H. Johns Fellowships, McAfee Estate Scholarship in Zoology, SERM Scholarships, GCA Frances Peacock Scholarship for Native Bird Habitat, APWS Charles Sivelle Scholarship, CWF Orville Erickson Memorial Scholarship, and a COPandGA Bob Landon Bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista L. Bush.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 66 kb)

Supplementary material 2 (PDF 51 kb)

Appendix

Appendix

See Table 6.

Table 6 Proportion of individual birds assigning to the most likely structure defined K or populations for (a) ∆K at the population level, (b) Pr(XlK) at the population level, (c) ∆K at the subpopulation level, and (d) Pr(XlK) at the subpopulation level

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bush, K.L., Dyte, C.K., Moynahan, B.J. et al. Population structure and genetic diversity of greater sage-grouse (Centrocercus urophasianus) in fragmented landscapes at the northern edge of their range. Conserv Genet 12, 527–542 (2011). https://doi.org/10.1007/s10592-010-0159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0159-8

Keywords

Navigation