Skip to main content

Advertisement

Log in

Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We investigated the phylogeography and subspecies classification of the ostrich (Struthio camelus) by assessing patterns of variation in mitochondrial DNA control region (mtDNA-CR) sequence and across fourteen nuclear microsatellite loci. The current consensus taxonomy of S. camelus names five subspecies based on morphology, geographic range, mtDNA restriction fragment length polymorphism and mtDNA-CR sequence analysis: S. c. camelus, S. c. syriacus, S. c. molybdephanes, S. c. massaicus and S. c. australis. We expanded a previous mtDNA dataset from 18 individual mtDNA-CR sequences to 123 sequences, including sequences from all five subspecies. Importantly, these additional sequences included 43 novel sequences of the red-necked ostrich, S. c. camelus, obtained from birds from Niger. Phylogeographic reconstruction of these sequences matches previous results, with three well-supported clades containing S. c. camelus/syriacus, S. c. molybdophanes, and S. c. massaicus/australis, respectively. The 14 microsatellite loci assessed for 119 individuals of four subspecies (all but S. c. syriacus) showed considerable variation, with an average of 13.4 (±2.0) alleles per locus and a mean observed heterozygosity of 55.7 (±5.3)%. These data revealed high levels of variation within most subspecies, and a structure analysis revealed strong separation between each of the four subspecies. The level of divergence across both marker types suggests the consideration of separate species status for S. c. molybdophanes, and perhaps also for S. c. camelus/syriacus. Both the mtDNA-CR and microsatellite analyzes also suggest that there has been no recent hybridization between the subspecies. These findings are of importance for management of the highly endangered red-necked subspecies (S. c. camelus) and may warrant its placement onto the IUCN red list of threatened animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arctander P, Johansen C, Coutellec-Vreto M (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol 16:1724–1739

    CAS  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Barnett R, Yamaguchi N, Barnes I, Cooper A (2006) The origin, current diversity and future conservation of the modern lion (Panthera leo). Proc Royal Soc B 273:2119–2125

    Article  Google Scholar 

  • Brown L, Urban E, Newman K (1982) The Birds of Africa, vol 1. Academic Press, London

    Google Scholar 

  • Brown D, Brenneman R, Koepfli K-P et al (2007) Extensive population genetic structure in the giraffe. BMC Biology 5:57

    Article  PubMed  Google Scholar 

  • Coltman DW, Pilkington JG, Pemberton JM (2003) Fine-scale genetic structure in a free-living ungulate population. Mol Ecol 12:733–742

    Article  PubMed  CAS  Google Scholar 

  • Del-Hoyo J, Elliott A, Sargatal J (eds) (1992) Handbook of the birds of the world. volume 1: Ostrich to Ducks. Lynx Edicions, Barcelona

    Google Scholar 

  • Dubach J, Patterson BD, Briggs MB et al (2005) Molecular genetic variation across the southern and eastern geographic ranges of the African lion, Panthera leo. Conserv Genet 6:15–24

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1:47–50

    CAS  Google Scholar 

  • Faulkes GC, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC (2004) Phylogeographical patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae). Mol Ecol 13:613–629

    Article  PubMed  CAS  Google Scholar 

  • Flagstad O, Syvertsen PO, Stenseth NC, Jakobsen KS (2001) Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proc Royal Soc B 268:667–677

    Article  CAS  Google Scholar 

  • Fleischer RC, Olson S, James HF, Cooper AC (2000) The identity of the extinct Hawaiian eagle (Haliaeetus) as determined by mitochondrial DNA sequence. Auk 117:1051–1056

    Article  Google Scholar 

  • Freeman AR, Machugh DE, McKeown S et al (2001) Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus). Heredity 86:355–362

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Gallant CR (1996) Microgeographic patterns of genetic and morphological variation in savannah sparrows (Passerculus sandwichensis). Evolution 50:1631–1637

    Article  Google Scholar 

  • Freitag S, Robinson TJ (1993) Phylogeographic patterns in mitochondrial DNA of the ostrich (Struthio camelus). Auk 110:614–622

    Google Scholar 

  • Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. Heredity 88:335–342

    CAS  Google Scholar 

  • Hewitt GM (2004) The structure of biodiversity—insights from molecular phylogeography. Front Zool 1(4). doi:10.1186/1742-9994-1-4

  • Horváth MB, Martínez-Cruz B, Negro JJ, Kalmár L, Godoy JA (2005) An overlooked DNA source for non-invasive genetic analysis in birds. J Avian Biol 36:84–88

    Article  Google Scholar 

  • Huang Y, Liu Q, Tang B, Lin L, Liu W, Zhang L, Li N, Hu X (2008) A preliminary microsatellite genetic map of the ostrich (Struthio camelus). Cytogenet Genome Res 121:130–136

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Chakraborty R (1994) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120–127

    PubMed  CAS  Google Scholar 

  • Langella O (1999) Populations. 1.2.19. [http://bioinformatics.org/~tryphon/populations/]

  • Lewis A, Pomeroy DE (1989) A bird atlas of Kenya. Balkema, Rotterdam

    Google Scholar 

  • Maddison DR, Maddison WP (2001) MacClade 4: analysis of phylogeny and character evolution. Version 4.02. Sinauer Associates, Sunderland

    Google Scholar 

  • Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving pan-african biodiversity. PLoS ONE 2:e454

    Article  PubMed  Google Scholar 

  • Muwanika VB, Nyakaana S, Siegismund HR, Arctander P (2003) Phylogeography and population structure of the common warthog (Phacochoerus africanus) inferred from variation in mitochondrial DNA sequences and microsatellite loci. Heredity 91:361–372

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski S, Massalatchi MS, Mamane M (2001) Evidence of a dramatic decline of the red-necked ostrich Struthio camelus camelus in the Aïr and Ténéré National Nature Reserve, Niger. Oryx 35:349–352

    Google Scholar 

  • Page R (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Partridge T, Wood B, de Menocal P (1995) The influence of global climate change and regional uplift on large-mammalian evolution in eastern and southern Africa. In: Vrba ES, Denton GH, Partridge TC (eds) Paleoclimate and evolution with emphasis on human origins. Yale University Press, London, pp 331–355

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Robinson TJ, Matthee CA (1999) Molecular genetic relationships of the extinct ostrich, Struthio camelus syriacus: consequences for ostrich introductions into Saudi Arabia. Anim Conserv 2:165–171

    Article  Google Scholar 

  • Rohland N, Pollack JL, Nagel D et al (2005) The population history of extant and extinct hyenas. Mol Biol Evol 22:2435–2443

    Article  PubMed  CAS  Google Scholar 

  • Ruokonen M, Kvist L (2002) Structure and evolution of the avian mitochondrial control region. Mol Phylogenet Evol 23:422–432

    Article  PubMed  CAS  Google Scholar 

  • Seddon PJ, Soorae PS (1999) Guidelines for subspecific substitutions in wildlife restoration projects. Conserv Biol 13:177–184

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). version 4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang B, Huang Y, Lin L et al (2003) Isolation and characterization of 70 novel microsatellite markers from ostrich (Struthio camelus) genome. Genome 46:833–840

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Fieldwork was funded by the Sahara Conservation Fund, Saint Louis Zoo, Smithsonian National Zoological Park, Niger’s Ministry of Environment, San Diego Zoo’s Wild Animal Park, AZA Conservation Endowment Fund, and Disney’s Animal Kingdom; and laboratory analyses by Friends of the National Zoo and the Center for Conservation and Evolutionary Genetics. We thank Niger’s Ministry, the Directorate General of Environment, T. J. Robinson, and Dr. Maikano for assistance in the field, and Nancy Rotzel, Laura Morse, Frank Hailer and Emily Latch for help with logistics and/or analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Fleischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.M., Hallager, S., Monfort, S.L. et al. Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus). Conserv Genet 12, 423–431 (2011). https://doi.org/10.1007/s10592-010-0149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0149-x

Keywords

Navigation