Skip to main content

Advertisement

Log in

Captive breeding and reintroduction of the lesser kestrel Falco naumanni: a genetic analysis using microsatellites

  • Short Communication
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We used microsatellites to assess ongoing captive breeding and reintroduction programs of the lesser kestrel. The extent of genetic variation within the captive populations analysed did not differ significantly from that reported in wild populations. Thus, the application of widely recommended management practices, such as the registration of crosses between individuals in proper stud books and the introduction of new individuals into the genetic pools, has proven satisfactory to maintain high levels of genetic variation. The high rates of hatching failure occasionally documented in captivity can therefore not be attributed to depressed genetic variation. Even though genetic diversity in reintroduced populations did not differ significantly when compared to wild populations either, average observed heterozygosities and inbreeding coefficients were significantly lower and higher, respectively, when compared to the captive demes where released birds came. Monitoring of reproductive parameters during single-pairing breeding and paternity inference within colonial facilities revealed large variations in breeding success between reproductive adults. The relative number of breeding pairs that contributed to a large part of captive-born birds (50–56%) was similar in both cases (28.6 and 26.9%, respectively). Thus, the chances for polygyny (rarely in this study), extra-pair paternity (not found in this study) and/or social stimulation of breeding parameters do not seem to greatly affect the genetically effective population size. Independently of breeding strategies, the release of unrelated fledglings into the same area and the promotion of immigration should be mandatory to counteract founder effects and avoid inbreeding in reintroduced populations of lesser kestrels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alcaide M, Negro JJ, Serrano D, Tella JL, Rodriguez C (2005) Extra-pair paternity in the lesser kestrel Falco naumanni: a re-evaluation using microsatellite markers. Ibis 147:608–611. doi:10.1111/j.1474-919x.2005.00429.x

    Article  Google Scholar 

  • Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL (2008a) Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665. doi:10.1111/j.1365-294X.2008.03791.x

    Article  CAS  PubMed  Google Scholar 

  • Alcaide M, Serrano D, Tella JL, Negro JJ (2008b) Strong philopatry derived from capture–recapture records does not lead to fine-scale genetic differentiation in lesser kestrels. J Anim Ecol. doi:10.1111/j.1365-2656.2008.01493.x

  • Alcaide M, Serrano D, Negro JJ, Tella JL, Laaksonen T, Müller C, Gal A, Korpimäki E (2009) Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: a comparison with the widespread and sympatric Eurasian Kestrel. Heredity 109:190–198. doi:10.1038/hdy.2008.107

    Article  Google Scholar 

  • Ballou JD, Lacy RC (1995) Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou JD, Gilpin M, Foose TJ (eds) Population management for survival & recovery analytical methods and strategies in small population conservation. Columbia University Press, New York, pp 76–111

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2002) GENETIX 404 Logiciel sous Windows TM pour la Génétique des Populations. Laboratoire Génome Populations Interactions CNRS UMR 5000, Université de Montpellier II, Montpellier France

  • Biber JP (1990) Action plan for the conservation of western lesser kestrel (Falco naumanni) populations. International Council for Bird Preservation (Study Report 41): Cambridge UK

  • Bijleveld M (1974) Birds of prey in Europe. McMillan Press, London

    Google Scholar 

  • BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife conservation series no. 12, BirdLife International, Cambridge

  • Calabuig G, Ortego J, Aparicio JM, Cordero PJ (2008) Public information in selection of nesting colony by lesser kestrels: which cues are used and when are they obtained? Anim Behav 75:1611–1617. doi:10.1016/j.anbehav.2007.10.022

    Article  Google Scholar 

  • Colás J, Corroto M, García Brea A, Gough R, Jiménez Gómez P (2002) Dramatic infertility and embryo mortality in a lesser kestrel (Falco naumanni) captive breeding program in Spain. J Wildl Dis 38:1

    Google Scholar 

  • Cramp S, Simmons KEL (1980) The birds of the Western Palearctic, vol 2. Oxford University Press, Oxford

    Google Scholar 

  • DeYoung RW, Demarais S, Honeycutt RL, Rooney AP, Gonzales RA, Gee KL (2003) Genetic consequences of white-tailed deer (Odocoileus virginianus) restoration in Mississippi. Mol Ecol 12:3237–3252. doi:10.1046/j.1365-294X.2003.01996.x

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Google Scholar 

  • Gautschi B, Müller JP, Schmid B, Skykoff JA (2003) Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity 91:9–16. doi:10.1038/sj.hdy.6800278

    Article  CAS  PubMed  Google Scholar 

  • Gemmell NJ, Akiyama S (1996) An efficient method for the extraction of DNA from vertebrate tissues. Trends Genet 12:338–339. doi:10.1016/S0168-9525(96)80005-9

    Article  CAS  PubMed  Google Scholar 

  • Gilligan DM, Frankham R (2003) Dynamics of genetic adaptation to captivity. Conserv Genet 4:189–197. doi:10.1023/A:1023391905158

    Article  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hedrick PW (2005) Large variance in reproductive success and the Ne/N ratio. Evol Int J Org Evol 59:1596–1599

    Google Scholar 

  • Hedrick PW, Fredrickson RJ (2008) Captive breeding and the reintroduction of Mexican and red wolves. Mol Ecol 17:344–350. doi:10.1111/j.1365-294X.2007.03400.x

    Article  CAS  PubMed  Google Scholar 

  • Hirzel AH, Posse B, Oggier AP, Crettenands Y, Glenz C, Arlettaz R (2004) Ecological requirements of reintroduced populations and the requirements for the release policy: the case of the bearded vulture. J Appl Ecol 41:1103–1116. doi:10.1111/j.0021-8901.2004.00980.x

    Article  Google Scholar 

  • Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evol Int J Org Evol 52:240–250. doi:10.2307/2410939

    Google Scholar 

  • Leberg PL, Ellsworth DL (1999) Further evaluation of the genetic consequences of translocations on southeastern white-tailed deer populations. J Wildl Manage 63:327–334. doi:10.2307/3802516

    Article  Google Scholar 

  • Lenz TL, Jacob A, Wedekind C (2007) Manipulating sex ratio to increase population growth: the example of the Lesser Kestrel. Anim Conserv 10:236–244. doi:10.1111/j.1469-1795.2007.00099.x

    Article  Google Scholar 

  • Lopo L, Gámez I, Gutiérrez C, Aguilar CM (2004) Programa de reintroducción del cernícalo primilla en La Rioja. Actas del VI Congreso Nacional del Cernícalo Primilla, Zaragoza, Spain

    Google Scholar 

  • Marshall TC, Slate J, Kruuk L, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Meyer E, Peterson AT, Servín JI, Kiff LF (2006) Ecological niche modelling and prioritizing areas for species reintroductions. Oryx 40:411–418. doi:10.1017/S0030605306001360

    Article  Google Scholar 

  • McLean JE, Seamons TR, Dauer MB, Bentzen P, Quinn TP (2008) Variation in reproductive success and effective number of breeders in a hatchery population of steelhead trout (Oncorhynchus mykiss): examination by microsatellite-based parentage analysis. Conserv Genet 9:295–304. doi:10.1007/s10592-007-9340-0

    Article  Google Scholar 

  • Morrow EH, Arnqvist G, Pitcher TE (2002) The evolution of infertility: does hatching rate in birds coevolve with female polyandry. J Evol Biol 15:702–709. doi:10.1046/j.1420-9101.2002.00445.x

    Article  Google Scholar 

  • Nesje M, Roed KH, Lifjeld JT, Lindberg P, Steens OF (2000) Genetic relationship in the Peregrine Falcon (Falco peregrinus) analysed by microsatellite DNA markers. Mol Ecol 9:53–60. doi:10.1046/j.1365-294x.2000.00834.x

    Article  CAS  PubMed  Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184. doi:10.1046/j.1523-1739.1994.08010175.x

    Article  Google Scholar 

  • Ortego J, Aparicio JM, Calabuig G, Cordero PJ (2007) Increase of heterozygosity in a growing population of lesser kestrels. Biol Lett 3:585–588. doi:10.1098/rsbl.2007.0268

    Article  PubMed  Google Scholar 

  • Pomarol M (1993) Lesser Kestrel recovery project in Catalonia. In: Nicholls MK, Clarke R (eds) Biology and conservation of small falcons: Proceedings of the 1991 Hawk and Owl Trust Conference. The Hawk and Owl Trust, London

    Google Scholar 

  • Pomarol M, Carbonell F, Heredia G, Valbuena E, Alonso M, Serrano D (2004a) Cria en cautividad y reintroducción. In: Serrano D, Delgado JM (eds) El cernícalo primilla en Andalucía Bases ecológicas para su conservación. Consejería de Medio Ambiente Junta de Andalucía, Sevilla

    Google Scholar 

  • Pomarol M, Carbonell F, Bonfil J (2004b) Actuaciones realizadas para la recuperación de cernícalo primilla en Catalunya. Actas del VI Congreson Nacional del Cernícalo Primilla, Zaragoza

    Google Scholar 

  • Ralls K, Ballou JD (2004) Genetic status and management of california condors. The Condor 106:215–228. doi:10.1650/7348

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225. doi:10.2307/2409177

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33. doi:10.1016/j.tree.2006.08.009

    Article  PubMed  Google Scholar 

  • Serrano D, Tella JL (2003) Dispersal within a spatially structured population of lesser kestrels: the role of spatial isolation and conspecific attraction. J Anim Ecol 72:400–410. doi:10.1046/j.1365-2656.2003.00707.x

    Article  Google Scholar 

  • Serrano D, Forero MG, Donázar JA, Tella JL (2004) Dispersal and social attraction affect colony selection and dynamics of lesser kestrels. Ecology 85:3438–3447. doi:10.1890/04-0463

    Article  Google Scholar 

  • Serrano D, Tella JL, Ursúa E (2005) Proximate causes and fitness consequences of hatching failure in lesser kestrels Falco naumanni. J Avian Biol 36:242–250. doi:10.1111/j.0908-8857.2005.03395.x

    Article  Google Scholar 

  • Sherrod SK, Heinrich WR, Burnham WA, Barclay JH, Cade TJ (1981) Hacking: a method for releasing Peregrine Falcons and other birds of prey. Peregrine Found, Ithaca

    Google Scholar 

  • Tella JL, Negro JJ, Villarroel M, Kuhnlein U, Hiraldo F, Donázar JA, Bird DM (1996) DNA fingerprinting reveals polygyny in the lesser kestrel (Falco naumanni). Auk 113:262–265

    Google Scholar 

  • Waas JR, Colgan PW, Boag PT (2005) Playback of colony sound alters the breeding schedule and clutch size in zebra finch (Taeniopygia guttata) colonies. Proc R Soc Lond B Biol Sci 2:383–388. doi:10.1098/rspb.2004.2949

    Article  Google Scholar 

  • Wagner HW, Sefc KM (1999) Identity: 10. Centre for Applied Genetics University of Agricultural Sciences Vienna, Vienna

    Google Scholar 

  • Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (2002) Rapid genetic deterioration in captivity: causes and conservation implications. Conserv Genet 3:277–288. doi:10.1023/A:1019954801089

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to all the people who kindly helped to collect kestrel samples Therefore, we are thankful to J. L. Tella, E. Ursúa, A. Gajón, J. Blas, G. López, C. Rodríguez, J. Bustamante, R. Alcázar, J. D Morenilla, P. Prieto, I. Sánchez, A. García, I. Gámez, F. Carbonell, G. González, R. Bonal, J. M. Aparicio, A. de Frutos, P. Olea, E. Banda, C. Gutiérrez, P. Pilard and L. Brun. We especially thank people from the captive breeding centers of DEMA, GREFA and TORREFERRUSA (M. Martín, F. Carbonell and others). Daniel Janes and Tobias Lenz definitely contributed to improve this manuscript. We are also indebt to the Associate Editor Dr. Vicki Friesen and several anonymous reviewers for their kind and helpful assistance during the peer-review process.This study was supported by the MCyT (project REN2001-2310 and CGL2004-04120), which also provided a research grant to M. Alcaide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Alcaide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcaide, M., Negro, J.J., Serrano, D. et al. Captive breeding and reintroduction of the lesser kestrel Falco naumanni: a genetic analysis using microsatellites. Conserv Genet 11, 331–338 (2010). https://doi.org/10.1007/s10592-009-9810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9810-7

Keywords

Navigation