Skip to main content

Advertisement

Log in

Inbreeding in reintroduced populations: the effects of early reintroduction history and contemporary processes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Maintaining genetic variation and minimizing inbreeding are central goals of conservation genetics. It is therefore crucial to understand the important population parameters that affect inbreeding, particularly in reintroduction programs. Using data from 41 reintroduced Alpine ibex (Capra ibex ibex) populations we estimated inbreeding since the beginning of reintroductions using population-specific Fst, and inbreeding over the last few generations with contemporary effective population sizes. Total levels of inbreeding since reintroduction of ibex were, on average, close to that from one generation of half-sib mating. Contemporary effective population sizes did not reflect total inbreeding since reintroduction, but 16% of variation in contemporary effective population sizes among populations was due to variation in current population sizes. Substantial variation in inbreeding levels among populations was explained by founder group sizes and the harmonic mean population sizes since founding. This study emphasizes that, in addition to founder group sizes, early population growth rates are important parameters determining inbreeding levels in reintroduced populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Oxford

    Google Scholar 

  • Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337

    Article  PubMed  Google Scholar 

  • Anderson EC (2005) An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood. Genetics 170:955–967

    Article  CAS  PubMed  Google Scholar 

  • Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol Ecol 12:35–49

    Article  CAS  PubMed  Google Scholar 

  • Aspi J, Roininen E, Ruokonen M, Kojola I, Vila C (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576

    Article  CAS  PubMed  Google Scholar 

  • Bartley D, Bagley M, Gall G, Bentley B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv Biol 6:365–375

    Article  Google Scholar 

  • Biebach I, Keller LF (2009) A strong genetic footprint of the reintroduction history of Alpine ibex (Capra ibex ibex). Mol Ecol 18:5046–5058

    Article  PubMed  Google Scholar 

  • Chesser RK, Rhodes OE, Sugg DW, Schnabel A (1993) Effective sizes for subdivided populations. Genetics 135:1221–1232

    CAS  PubMed  Google Scholar 

  • Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc Lond B Biol Sci 266:2269–2274

    Article  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Publishing Company, Minneapolis, MN

  • Ewing SR, Nager RG, Nicoll MAC, Aumjaud A, Jones CG, Keller LF (2008) Inbreeding and loss of genetic variation in a reintroduced population of Mauritius Kestrel. Conserv Biol 22:395–404

    Article  PubMed  Google Scholar 

  • Frankham R (1995) Effective population-size adult-population size ratios in wildlife––a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Fraser DJ, Hansen MM, Ostergaard S, Tessier N, Legault M, Bernatchez L (2007) Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Mol Ecol 16:3866–3889

    Article  PubMed  Google Scholar 

  • Grodinsky C, Stuwe M (1987) The reintroduction of the Alpine Ibex to the Swiss Alps. Smithsonian 18:68–77

    Google Scholar 

  • Hedrick P (2005) Large variance in reproductive success and the N-e/N ratio. Evolution 59:1596–1599

    PubMed  Google Scholar 

  • Hedrick PW, Miller PS (1992) Conservation genetics––techniques and fundamentals. Ecol Appl 2:30–46

    Article  Google Scholar 

  • Hill WG (1981) Estimation of effective population-size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Hoelzel AR (1999) Impact of population bottlenecks on genetic variation and the importance of life-history: a case study of the northern elephant seal. Biol J Linn Soc 68:23–39

    Article  Google Scholar 

  • Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting Fst. Nat Rev Genet 10:639–650

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR (1985) The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics 109:611–631

    CAS  PubMed  Google Scholar 

  • Jacquard A (ed) (1974) The genetic structure of populations. Springer Verlag, Berlin

    Google Scholar 

  • Jacquard A (1975) Inbreeding: one word, several meanings. Theor Popul Biol 7:338–363

    Article  CAS  PubMed  Google Scholar 

  • Johnson PCD, Haydon DT (2007) Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics 175:827–842

    Article  CAS  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keller LF, Biebach I, Hoeck PEA (2007) The need for a better understanding of inbreeding effects on population growth. Anim Conserv 10:286–287

    Article  Google Scholar 

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manag 69:1385–1399

    Article  Google Scholar 

  • Maudet C, Beja-Pereira A, Zeyl E, Nagash H, Kence A, Ozut D, Biju-Duval MP, Boolormaa S, Coltman DW, Taberlet P, Luikart G (2004) A standard set of polymorphic microsatellites for threatened mountain ungulates (Caprini, Artiodactyla). Mol Ecol Notes 4:49–55

    Article  CAS  Google Scholar 

  • Mitchell RJ (1993) Path analysis––pollination. In: Scheiner SM, Gurevitch J (eds) The design and analysis of ecological experiments, 1st edn. Chapman & Hall, New York, pp 211–230

    Google Scholar 

  • Nei M, Li WH (1973) Linkage disequilibrium in subdivided populations. Genetics 75:213–219

    CAS  PubMed  Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic-variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nunney L (1991) The influence of age structure and fecundity on effective population-size. Proc R Soc Lond B Biol Sci 246:71–76

    Article  CAS  Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population-size. Evolution 47:1329–1341

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ryman N, Baccus R, Reuterwall C, Smith MH (1981) Effective population-size, generation interval, and potential loss of genetic-variability in game species under different hunting regimes. Oikos 36:257–266

    Article  Google Scholar 

  • Saether BE, Lillegard M, Grotan V, Filli F, Engen S (2007) Predicting fluctuations of reintroduced ibex populations: the importance of density dependence, environmental stochasticity and uncertain population estimates. J Anim Ecol 76:326–336

    Article  PubMed  Google Scholar 

  • Schaub M, Zink R, Beissmann H, Sarrazin F, Arlettaz R (2009) When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the Alps. J Appl Ecol 46:92–100

    Article  Google Scholar 

  • Stiver JR, Apa AD, Remington TE, Gibson RM (2008) Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse. Biol Conserv 141:472–481

    Google Scholar 

  • Stuwe M, Scribner KT (1989) Low genetic-variability in reintroduced Alpine Ibex (Capra ibex ibex) populations. J Mammal 70:370–373

    Article  Google Scholar 

  • Vitalis R, Couvet D (2001) Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157:911–925

    CAS  PubMed  Google Scholar 

  • Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823

    CAS  PubMed  Google Scholar 

  • Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257

    Article  CAS  PubMed  Google Scholar 

  • Wang JL (2005) Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc B Biol Sci 360:1395–1409

    Article  CAS  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    CAS  PubMed  Google Scholar 

  • Waples RS (2002) Definition and estimation of effective population size in the conservation of endangered species. In: Beissinger SR, McCullough DR (eds) Population viability analysis. University of Chicago Press, Chicago, pp 147–168

    Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating f-statistics for the analysis of population-structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations, Vol 2. The theory of gene frequencies. University of Chicago Press, Chicago

Download references

Acknowledgements

This study would not have been possible without the help of numerous game wardens who collected samples and assisted with biopsy darting. We thank the hunting agencies of the cantons Appenzell Innerrhoden, Bern, Glarus, Graubünden, Luzern, Nidwalden, Obwalden, Schwyz, St. Gallen, Tessin, Uri, Vaud and Valais for their support in collecting data and samples. Kim Scribner kindly supplied samples from 1986 to 1988 and patiently answered our questions about them. Thanks to Mark Beaumont for modifying 2MOD and for discussing inbreeding and Fst, to Heinz Maag for developing and producing biopsy darts, to Thomas Bucher for assistance with genotyping, to Peter Wandeler for advice on laboratory procedures, and to Simon Aeschbacher and Barabara Oberholzer for help gathering information about the reintroduction history. We thank Christine Grossen and Frank Reinisch for assistance in the field. This project was funded by the Swiss Federal Office for the Environment (FOEN) and the Forschungskredit of the University of Zurich and profited from valuable support from the ESF Science Networking Programme “ConGen”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Biebach.

Appendix

Appendix

See Table 2.

Table 2 Estimated genotyping error rates for samples of the first sampling period (1986–1988)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biebach, I., Keller, L.F. Inbreeding in reintroduced populations: the effects of early reintroduction history and contemporary processes. Conserv Genet 11, 527–538 (2010). https://doi.org/10.1007/s10592-009-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0019-6

Keywords

Navigation