Skip to main content
Log in

A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate a DC (Difference of Convex functions) programming technique for solving large scale Eigenvalue Complementarity Problems (EiCP) with real symmetric matrices. Three equivalent formulations of EiCP are considered. We first reformulate them as DC programs and then use DCA (DC Algorithm) for their solution. Computational results show the robustness, efficiency, and high speed of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Thi, H.A., Pham Dinh, T.: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. (2010, to appear)

  2. Le Thi, H.A., Pham Dinh, T.: Large scale molecular optimization from distance matrices by a DC optimization approach. SIAM J. Control Optim. 14(1), 77–116 (2003)

    MATH  Google Scholar 

  3. Le Thi, H.A., Pham Dinh, T., Yen, N.D.: Properties of two DC Algorithms for quadratic programming. J. Glob. Optim. (2010, in press)

  4. Auchmuty, G.: Unconstrained variational principles for eigenvalues of real symmetric matrices. SIAM J. Math. Anal. 20(5), 1186–1207 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auchmuty, G.: Globally and rapidly convergent algorithms for symmetric eigenproblems. SIAM J. Matrix Anal. Appl. 12(4), 690–706 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chatelin, F.: Eigenvalues of Matrices. Wiley, New York (1993)

    MATH  Google Scholar 

  7. Chung, S.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60(3), 393–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa, A.P., Seeger, A.: Numerical solution of cone-constrained eigenvalue problems. Comput. Optim. Appl. 28(1), 37–61 (2009)

    MATH  Google Scholar 

  9. Costa, A.P., Figueiredo, I.N., Judice, J., Martins, J.A.C.: A complementarity eigenproblem in the stability analysis of finite dimensional elastic systems with frictional contact. In: Ferris, M., Pang, J.S., Mangasarian, O. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 67–83. Kluwer Academic, New York (2001)

    Google Scholar 

  10. Golub, G.H., van der Vorst, H.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123(1–2), 35–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harrington, J.E., Hobbs, B.F., Pang, J.S., Liu, A., Roch, G.: Collusive game solutions via optimization. Math. Program. 104(1–2), 407–435 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  13. Jacobi, C.G.J.: Uber ein leichtes verfahren die in der theorie der sacularstorungen vorkommenden gleichungen numerisch aufzulosen. J. Reine Angew. Math. 30, 51–94 (1846)

    Article  MATH  Google Scholar 

  14. Judice, J., Sherali, H.D., Ribeiro, I.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Judice, J., Raydan, M., Rosa, S., Santos, S.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algorithms 47, 391–407 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Judice, J., Sherali, H.D., Ribeiro, I., Rosa, S.: On the asymmetric eigenvalue complementarity problem. Optim. Methods Softw. 24, 549–568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanno, Y., Ohsaki, M.: Optimization-based stability analysis of structures under unilateral constraints. Int. J. Numer. Methods Eng. 77, 90–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer, Berlin (2005)

    MATH  Google Scholar 

  19. Lavilledieu, P., Seeger, A.: Existence de valeurs propres pour les systèmes multivoques: résultats anciens et nouveaux. Ann. Sci. Math. Qué. 2001, 47–70 (2001)

    MathSciNet  Google Scholar 

  20. Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications. Habilitation à Diriger des Recherches, Université de Rouen (1997)

  21. Le Thi, H.A., Pham Dinh, T.: A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50(1–2), 93–120 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le Thi, H.A., Pham Dinh, T.: The DC (Difference of Convex functions) programming and DCA revisited with DC models of real world non convex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: Convergence Analysis of DC Algorithm for DC programming with subanalytic data. Ann. Oper. Res. Technical Report, LMI, INSA-Rouen, August 2009

  24. Liu, Y., Shen, X., Doss, H.: Multicategory ψ-learning and support vector machine: Computational tools. J. Comput. Graph. Stat. 14, 219–236 (2005)

    Article  MathSciNet  Google Scholar 

  25. Matrix market. A visual repository of test data for use in comparative studies of algorithms for numerical linear algebra

  26. Mongeau, M., Torki, M.: Computing eigenelements of real symmetric matrices via optimization. Comput. Optim. Appl. 29, 263–287 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murtagh, B.A., Saunders, M.A.: Minos 5.1 user’s guide. Technical Report 83-20R, Department of Operations Research, Stanford University (1987)

  28. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)

    MATH  Google Scholar 

  29. Naumann, J., Wenk, H.U.: On eigenvalue problems for variational inequalities. An application to nonlinear plate buckling. Rend. Mat. 9(6), 439–463 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Neumann, J., Schnörr, C., Steidl, G.: Combined SVM-based feature selection and classification. Mach. Learn. 61, 129–150 (2005)

    Article  MATH  Google Scholar 

  31. Parlett, B.N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics, vol. 20. SIAM, Philadelphia (1997)

    Google Scholar 

  32. Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997). Dedicated to Professor Hoang Tuy on the occasion of his 70th birthday

    MathSciNet  MATH  Google Scholar 

  33. Pham Dinh, T., Le Thi, H.A.: DC optimization algorithms for solving the trust region subproblem. SIAM J. Control Optim. 8, 476–505 (1998)

    MATH  Google Scholar 

  34. Queiroz, M., Judice, J., Humes, C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73(248), 1849–1863 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis, 1st edn. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  36. Ronan, C., Fabian, S., Jason, W., Léon, B.: Trading convexity for scalability. In: Proceedings of the 23rd International Conference on Machine Learning ICML 2006, Pittsburgh, Pennsylvania, pp. 201–208 (2006)

    Google Scholar 

  37. Saad, Y.: Numerical methods for large eigenvalue problems. Manchester University Press, Manchester (1992)

    MATH  Google Scholar 

  38. Schnörr, C.: Signal and image approximation with level-set constraints. Computing 81, 137–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.G.: Sparse eigen methods by DC programming. In: ICML (2007)

    Google Scholar 

  41. Pham Dinh, T., Le Thi, H.A., Akoa, F.: Combining DCA and interior point techniques for large-scale nonconvex quadratic programming. Optim. Methods Softw. 23(4), 609–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thiao, M., Pham Dinh, T., Le Thi, H.A.: A DC programming approach for sparse eigenvalue problem. In: ICML (2010)

    Google Scholar 

  43. van der Vorst, H., Golub, G.H.: 150 years old and still alive: eigenproblems. In: The State of the Art in Numerical Analysis. Inst. Math. Appl. Conf. Ser. New Ser, vol. 63, pp. 93–119. Oxford University Press, New York (1997)

    Google Scholar 

  44. Vanderbei, R.J.: LOQO user’s manual, version 3.10. Technical Report SOR-97-08, Princeton University (2003)

  45. Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary tomography by iterating linear programs. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Computational Imaging and Vision—Geometric Properties from Incomplete Data. Kluwer Academic, Dordrecht (2005)

    Google Scholar 

  46. Zhou, Y., Gowda, M.S.: On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 431(5–7), 772–782 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoai An Le Thi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Thi, H.A., Moeini, M., Pham Dinh, T. et al. A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem. Comput Optim Appl 51, 1097–1117 (2012). https://doi.org/10.1007/s10589-010-9388-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9388-5

Keywords

Navigation