Skip to main content
Log in

Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We devise a hybrid approach for solving linear systems arising from interior point methods applied to linear programming problems. These systems are solved by preconditioned conjugate gradient method that works in two phases. During phase I it uses a kind of incomplete Cholesky preconditioner such that fill-in can be controlled in terms of available memory. As the optimal solution of the problem is approached, the linear systems becomes highly ill-conditioned and the method changes to phase II. In this phase a preconditioner based on the LU factorization is found to work better near a solution of the LP problem. The numerical experiments reveal that the iterative hybrid approach works better than Cholesky factorization on some classes of large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, I., Karmarkar, N.K., Resende, M.G.C., Veiga, G.: Data structures and programming techniques for the implementation of Karmarkar’s algorithm. ORSA J. Comput. 1(2), 84–106 (1989)

    MATH  Google Scholar 

  2. Adler, I., Karmarkar, N.K., Resende, M.G.C., Veiga, G.: An implementation of Karmarkar’s algorithms for linear programming. Math. Program. 44, 297–335 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Software 11, 275–302 (1999)

    MathSciNet  Google Scholar 

  4. As̆ić, M.D., Kovac̆ević-Vujc̆ić, V.V.: Ill-conditionedness and interior-point methods. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 11, 53–58 (2000)

    MathSciNet  Google Scholar 

  5. Baryamureeba, V.: Solution of large-scale weighted least squares problems. Numer. Linear Algebra Appl. 9, 93–106 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28(2), 149–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8, 639–655 (1971)

    Article  MathSciNet  Google Scholar 

  9. Campos, F.F.: Analysis of conjugate gradients—type methods for solving linear equations. Ph.D. thesis, Oxford University Computing Laboratory, Oxford (1995)

  10. Campos, F.F., Birkett, N.R.C.: An efficient solver for multi-right hand side linear systems based on the CCCG(η) method with applications to implicit time-dependent partial differential equations. SIAM J. Sci. Comput. 19(1), 126–138 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx an interior point code for linear programming. Optim. Methods Software 11(2), 397–430 (1999)

    MathSciNet  Google Scholar 

  12. Dollar, H.S., Gould, N.I.M., Wathen A.J.: On implicit-factorization constraint preconditioners. Technical Report RAL-TR-2004-036, Rutherford Appleton Laboratory. Also In: Di Pillo, G., Roma, M., (eds.) Large Scale Nonlinear Optim. Springer (2004, to appear)

  13. Duff, I.S., Grimes, R.G., Lewis, J.G.: User’s guide for the Harwell–Boeing sparse matrix collection (release I). Technical Report PA-92-86, CERFACS, Toulouse, France (1992)

  14. Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10, 673–688 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Forsythe, G.E., Straus, E.G.: On best conditioned matrices. Proc. Am. Math. Soc. 6, 340–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  16. George, A., Ng, E.: An implementation of Gaussian elimination with partial pivoting for sparse systems. SIAM J. Sci. Stat. Comput. 6, 390–409 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gill, P.E., Murray, W., Ponceléon, D.B., Saunders, M.A.: Preconditioners for indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl. 13, 292–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gondzio, J.: HOPDM (Version 2.12)—A fast LP solver based on a primal–dual interior point method. Eur. J. Oper. Res. 85, 221–225 (1995)

    Article  MATH  Google Scholar 

  19. Gondzio, J.: Multiple centrality corrections in a primal–dual method for linear programming. Comput. Optim. Appl. 6, 137–156 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput. 23, 1376–1395 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Haws, J.C., Meyer, C.D.: Preconditioning KKT systems. Online at http://meyer.math.ncsu.edu/Meyer/PS_Files/KKT.pdf

  22. Hungarian Academy of Sciences OR Lab: Miscellaneous LP models. Online at http://www.sztaki.hu/~meszaros/public_ftp/lptestset/misc

  23. Hungarian Academy of Sciences OR Lab: Stochastic LP test sets. Online at http://www.sztaki.hu/~meszaros/public_ftp/lptestset/stochlp

  24. Jones, M.T., Plassmann, P.E.: An improved incomplete Cholesky factorization. ACM Trans. Math. Software 21, 5–17 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Karisch, S., Burkard, R.S., Rendl, F.: QAPLIB—a quadratic assignment problem library. Eur. J. Oper. Res. 55, 115–119 (1991)

    Article  MATH  Google Scholar 

  26. Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lustig, I.J., Marsten, R.E., Shanno, D.F.: On implementing Mehrotra’s predictor-corrector interior point method for linear programming. SIAM J. Optim. 2, 435–449 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Manteuffel, T.A.: An incomplete factorization technique for positive definite linear systems. Math. Comput. 34(150), 473–497 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mehrotra, S.: On the implementation of a primal–dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mittelmann–LP models. Miscellaneous LP models collect by Hans D. Mittelmann. Online at ftp://plato.asu.edu/pub/lptestset/pds

  31. Munksgaard, N.: Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients. ACM Trans. Math. Software 6(2), 206–219 (1980)

    Article  MATH  Google Scholar 

  32. NETLIB LP repository: NETLIB collection LP test sets. Online at http://www.netlib.org/lp/data

  33. Oliveira, A.R.L.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Ph.D. thesis, Department of Computational and Applied Mathematics, Rice University, Houston (1997)

  34. Oliveira, A.R.L., Sorensen, D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra Appl. 394, 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Padberg, M., Rijal, M.P.: Location, Scheduling, Design and Integer Programming. Kluwer Academic, Boston (1996)

    MATH  Google Scholar 

  36. Portugal, L.F., Resende, M.G.C., Veiga, G., Júdice, J.J.: A truncated primal-infeasible dual-feasible network interior point method. Networks 35, 91–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Resende, M.G.C., Veiga, G.: An implementation of the dual affine scaling algorithm for minimum cost flow on bipartite uncapaciated networks. SIAM J. Optim. 3, 516–537 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. SLATEC collection. The dsics.f subroutine in NETLIB repository. Online at http://www.netlib.org/slatec/lin/dsics.f

  39. Wang, W., O’Leary, D.P.: Adaptive use of iterative methods in predictor-corrector interior point methods for linear programming. Numer. Algorithms 25(1–4), 387–406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocanegra, S., Campos, F.F. & Oliveira, A.R.L. Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods. Comput Optim Appl 36, 149–164 (2007). https://doi.org/10.1007/s10589-006-9009-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-006-9009-5

Keywords

Navigation