Skip to main content

Advertisement

Log in

Interconnected high-dimensional landscapes of epithelial–mesenchymal plasticity and stemness in cancer

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes—epithelial–mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable (this is a review article).

References

  1. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  2. Celià-Terrassa T, Kang Y (2016) Distinctive properties of metastasis-initiating cells. Genes Dev 30:892–908. https://doi.org/10.1101/gad.277681.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Celià-Terrassa T, Jolly MK (2020) Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med 10:a036905. https://doi.org/10.1101/cshperspect.a036905

    Article  CAS  PubMed  Google Scholar 

  4. Bocci F, Levine H, Onuchic JN, Jolly MK (2019) Deciphering the dynamics of epithelial-mesenchymal transition and cancer stem cells in tumor progression. Curr Stem Cell Rep 5:11–21

    Article  Google Scholar 

  5. Jolly MK, Ware KE, Gilja S et al (2017) EMT and MET: necessary or permissive for metastasis? Mol Oncol 11:755–769. https://doi.org/10.1002/1878-0261.12083

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Lu M, Jolly MK, Levine H et al (2013) MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci USA 110:18144–18149. https://doi.org/10.1073/pnas.1318192110

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pastushenko I, Brisebarre A, Sifrim A et al (2018) Identification of the tumour transition states occurring during EMT. Nature 556:463–468. https://doi.org/10.1038/s41586-018-0040-3

    Article  CAS  PubMed  Google Scholar 

  9. Huang RY-J, Wong MK, Tan TZ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915. https://doi.org/10.1038/cddis.2013.442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan TZ, Miow QH, Miki Y et al (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6:1279–1293. https://doi.org/10.15252/emmm.201404208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carduner L, Leroy-Dudal J, Picot CR et al (2014) Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins. Clin Exp Metastas 31:675–688. https://doi.org/10.1007/s10585-014-9658-1

    Article  CAS  Google Scholar 

  12. Simeonov KP, Byrns CN, Clark ML et al (2020) Single-cell lineage and transcriptome reconstruction of metastatic cancer reveals selection of aggressive hybrid EMT states. bioRxiv. https://doi.org/10.1101/2020.08.11.245787

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biddle A, Liang X, Gammon L et al (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71:5317–5326. https://doi.org/10.1158/0008-5472.CAN-11-1059

    Article  CAS  PubMed  Google Scholar 

  14. Biswas K, Jolly MK, Ghosh A (2019) Stability and mean residence times for hybrid epithelial/mesenchymal phenotype. Phys Biol 16:025003. https://doi.org/10.1088/1478-3975/aaf7b7

    Article  CAS  PubMed  Google Scholar 

  15. Gupta PB, Fillmore CM, Jiang G et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644. https://doi.org/10.1016/j.cell.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  16. Tripathi S, Chakraborty P, Levine H, Jolly MK (2020) A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Comput Biol 16:e1007619. https://doi.org/10.1101/592691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katsuno Y, Meyer DS, Zhang Z et al (2019) Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal 12:eaau8544. https://doi.org/10.1126/scisignal.aau8544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia W, Deshmukh A, Mani SA et al (2019) A possible role for epigenetic feedback regulation in the dynamics of the Epithelial-Mesenchymal Transition (EMT). Phys Biol 16:066004. https://doi.org/10.1088/1478-3975/ab34df

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia W, Tripathi S, Chakraborty P et al (2020) Epigenetic feedback and stochastic partitioning during cell division can drive resistance to EMT. Oncotarget 11:2611–2624. https://doi.org/10.18632/oncotarget.27651

    Article  PubMed  PubMed Central  Google Scholar 

  20. Biddle A, Gammon L, Liang X et al (2016) Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine 4:138–145. https://doi.org/10.1016/j.ebiom.2016.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  21. Celià-Terrassa T, Bastian C, Liu DD et al (2018) Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nat Commun 9:5005. https://doi.org/10.1038/s41467-018-07538-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karacosta LG, Anchang B, Ignatiadis N et al (2019) Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution. Nat Commun 10:5587. https://doi.org/10.1101/570341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stylianou N, Lehman ML, Wang C et al (2019) A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene 38:913–934. https://doi.org/10.1038/s41388-018-0488-5

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt JM, Panzilius E, Bartsch HS et al (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient twist1 activation. Cell Rep 10:131–139. https://doi.org/10.1016/j.celrep.2014.12.032

    Article  CAS  PubMed  Google Scholar 

  25. Cheung KJ, Ewald AJ (2014) Illuminating breast cancer invasion: diverse roles for cell-cell interactions. Curr Opin Cell Biol 30:99–111. https://doi.org/10.1016/j.ceb.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaeffer D, Somarelli JA, Hanna G et al (2014) Cellular migration and invasion uncoupled: increased migration is not an inexorable consequence of epithelial-to-mesenchymal transition. Mol Cell Biol 34:3486–3499. https://doi.org/10.1128/MCB.00694-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Devaraj V, Bose B (2019) Morphological state transition dynamics in EGF-induced epithelial to mesenchymal transition. J Clin Med 8:911. https://doi.org/10.3390/jcm8070911

    Article  CAS  PubMed Central  Google Scholar 

  28. Foroutan M, Bhuva DD, Lyu R et al (2018) Single sample scoring of molecular phenotypes. BMC Bioinform 19:404. https://doi.org/10.1186/s12859-018-2435-4

    Article  CAS  Google Scholar 

  29. Puram SV, Tirosh I, Parikh AS et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611–1624. https://doi.org/10.1016/j.cell.2017.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheung KJ, Padmanaban V, Silvestri V et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA 113:E854–E863. https://doi.org/10.1073/pnas.1508541113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tripathi S, Jolly MK, Woodward WA et al (2018) Analysis of hierarchical organization in gene expression networks reveals underlying principles of collective tumor cell dissemination and metastatic aggressiveness of inflammatory breast cancer. Front Oncol 8:244. https://doi.org/10.1101/204388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK (2021) A computational systems biology approach identifies SLUG as a mediator of partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs. https://doi.org/10.1159/000512520

    Article  PubMed  Google Scholar 

  33. Steinbichler TB, Dudas J, Ingruber J et al (2020) Slug is a surrogate marker of Epithelial to Mesenchymal Transition (EMT) in head and neck cancer. J Clin Med 9:2061. https://doi.org/10.3390/jcm9072061

    Article  CAS  PubMed Central  Google Scholar 

  34. Leroy P, Mostov KE (2007) Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. J Cell Sci 18:1943–1952. https://doi.org/10.1091/mbc.E06

    Article  CAS  Google Scholar 

  35. Schinke H, Pan M, Akyol M et al (2020) Partial epithelial-to-mesenchymal transition is prognostic and associates with slug in head and neck cancer. bioRxiv 346692

  36. Karaosmanoğlu O, Banerjee S, Sivas H (2018) Identification of biomarkers associated with partial epithelial to mesenchymal transition in the secretome of slug over-expressing hepatocellular carcinoma cells. Cell Oncol 41:439–453. https://doi.org/10.1007/s13402-018-0384-6

    Article  CAS  Google Scholar 

  37. Sterneck E, Poria DK, Balamurugan K (2020) Slug and E-cadherin: stealth accomplices? Front Mol Biosci 7:138. https://doi.org/10.3389/fmolb.2020.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andriani F, Bertolini G, Facchinetti F et al (2016) Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells. Mol Oncol 10:253–271. https://doi.org/10.1016/j.molonc.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  39. Hong T, Watanabe K, Ta CH et al (2015) An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLOS Comput Biol 11:e1004569. https://doi.org/10.1371/journal.pcbi.1004569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bocci F, Tripathi SC, Vilchez Mercedes SA et al (2019) NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol 11:251–263. https://doi.org/10.1093/intbio/zyz021

    Article  Google Scholar 

  41. Subbalakshmi AR, Kundnani D, Biswas K et al (2020) NFATc acts as a non-canonical phenotypic stability factor for a hybrid epithelial/mesenchymal phenotype. Front Oncol 10:1794. https://doi.org/10.3389/fonc.2020.553342

    Article  Google Scholar 

  42. Sampson VB, David JM, Puig I et al (2014) Wilms’ tumor protein induces an epithelial-mesenchymal hybrid differentiation state in clear cell renal cell carcinoma. PLoS ONE 9:e102041. https://doi.org/10.1371/journal.pone.0102041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Silveira DA, Gupta S, Mombach JCM (2020) Systems biology approach suggests new miRNAs as phenotypic stability factors in the epithelial–mesenchymal transition. J R Soc Interface 17:20200693. https://doi.org/10.1098/rsif.2020.0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dang TT, Esparza MA, Maine EA et al (2015) ∆Np63α promotes breast cancer cell motility through the selective activation of components of the Epithelial-to-Mesenchymal Transition program. Cancer Res 75:3925–3935. https://doi.org/10.1158/0008-5472.CAN-14-3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mandal M, Ghosh B, Anura A et al (2016) Modeling continuum of epithelial mesenchymal transition plasticity. Integr Biol 8:167–176. https://doi.org/10.1039/C5IB00219B

    Article  CAS  Google Scholar 

  46. Jolly MK, Tripathi SC, Jia D et al (2016) Stability of the hybrid epithelial/mesenchymal phentoype. Oncotarget 7:27067–27084

    Article  PubMed  PubMed Central  Google Scholar 

  47. Varankar SS, Kamble SS, Mali AM et al (2020) Functional balance between TCF21-Slug defines cellular plasticity and sub-classes in high-grade serous ovarian cancer. Carcinogenesis 41:515–526. https://doi.org/10.1093/carcin/bgz119

    Article  CAS  PubMed  Google Scholar 

  48. Subbalakshmi AR, Ashraf B, Jolly MK (2021) Biophysical and biochemical attributes of hybrid epithelial/mesenchymal phenotypes. Preprints 2021080453. https://doi.org/10.20944/preprints202108.0451.v1

  49. Margaron Y, Nagai T, Guyon L et al (2019) Biophysical properties of intermediate states of EMT outperform both epithelial and mesenchymal states. bioRxiv. https://doi.org/10.1101/797654

    Article  Google Scholar 

  50. Aponte PM, Caicedo A (2017) Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int 2017:5619472. https://doi.org/10.1155/2017/5619472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malta TM, Sokolov A, Gentles AJ et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173:338–354. https://doi.org/10.1016/j.cell.2018.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grün D, Muraro MJ, Boisset JC et al (2016) De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19:266–277. https://doi.org/10.1016/j.stem.2016.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gulati GS, Sikandar SS, Wesche DJ et al (2020) Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367:405–411. https://doi.org/10.1126/science.aax0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Efremov YR, Proskurina AS, Potter EA et al (2018) Cancer stem cells: emergent nature of tumor emergency. Front Genet 9:544. https://doi.org/10.3389/fgene.2018.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frisch SM, Schaller M, Cieply B (2013) Mechanisms that link the oncogenic epithelial- mesenchymal transition to suppression of anoikis. J Cell Sci 126:21–29. https://doi.org/10.1242/jcs.120907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833. https://doi.org/10.1158/0008-5472.CAN-06-3557

    Article  CAS  PubMed  Google Scholar 

  57. Shi Y, Fu X, Hua Y et al (2012) The side population in human lung cancer cell line NCI-H460 is enriched in stem-like cancer cells. PLoS ONE 7:e33358. https://doi.org/10.1371/journal.pone.0033358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ray A, Slama ZM, Morford RK et al (2017) Enhanced directional migration of cancer stem cells in 3D aligned collagen matrices. Biophys J 112:1023–1036. https://doi.org/10.1016/j.bpj.2017.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bertolini G, Roz L, Perego P et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106:16281–16286. https://doi.org/10.1073/pnas.0905653106

    Article  PubMed  PubMed Central  Google Scholar 

  60. Terris B, Cavard C, Perret C (2010) EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. J Hepatol 52:280–281. https://doi.org/10.1016/j.jhep.2009.10.026

    Article  CAS  PubMed  Google Scholar 

  61. Liu S, Cong Y, Wang D et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2:78–91. https://doi.org/10.1016/j.stemcr.2013.11.009

    Article  CAS  Google Scholar 

  62. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108:1397–1402. https://doi.org/10.1073/pnas.1018898108

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bierie B, Pierce SE, Kroeger C et al (2017) Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci USA 114:E2337-2346. https://doi.org/10.1073/pnas.1618298114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rasti A, Mehrazma M, Madjd Z et al (2018) Co-expression of cancer stem cell markers OCT4 and NANOG predicts poor prognosis in renal cell carcinomas. Sci Rep 8:11739. https://doi.org/10.1038/s41598-018-30168-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takeda K, Mizushima T, Yokoyama Y et al (2018) Sox2 is associated with cancer stem-like properties in colorectal cancer. Sci Rep 8:17639. https://doi.org/10.1038/s41598-018-36251-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang L, Shi P, Zhao G et al (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5:8. https://doi.org/10.1038/s41392-020-0110-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neelakantan D, Zhou H, Oliphant MUJ et al (2017) EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 8:15773. https://doi.org/10.1038/ncomms15773

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jolly MK, Preca B-T, Tripathi SC et al (2018) Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2:031908. https://doi.org/10.1063/1.5024874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bocci F, Gearhart-Serna L, Boareto M et al (2019) Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA 116:148–157. https://doi.org/10.1073/pnas.1815345116

    Article  CAS  PubMed  Google Scholar 

  71. Yang G, Quan Y, Wang W et al (2012) Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer 106:1512–1519. https://doi.org/10.1038/bjc.2012.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weiswald L-B, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia 1:1–15. https://doi.org/10.1016/j.neo.2014.12.004

    Article  Google Scholar 

  73. Valent P, Bonnet D, De Maria R et al (2012) Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Cancer 12:767–775. https://doi.org/10.1038/nrc3368

    Article  CAS  PubMed  Google Scholar 

  74. Castelli V, Giordano A, Benedetti E et al (2021) The great escape: the power of cancer stem cells to evade programmed cell death. Cancers 13:328. https://doi.org/10.3390/cancers13020328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang J, Antin P, Berx G et al (2020) Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 21:341–352. https://doi.org/10.1038/s41580-020-0237-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mani SA, Guo W, Liao M-J et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morel A-P, Lièvre M, Thomas C et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888. https://doi.org/10.1371/journal.pone.0002888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403. https://doi.org/10.1016/j.semcancer.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grosse-Wilde A, Fouquier d’ Herouei A, McIntosh E et al (2015) Stemness of the hybrid epithelial/mesenchymal state in breast cancer and it. PLoS ONE 10:e0126522. https://doi.org/10.1371/journal.pone.0126522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jolly MK, Huang B, Lu M et al (2014) Towards elucidating the connection between epithelial-mesenchymal transitions and stemness. J R Soc Interface 11:20140962. https://doi.org/10.1098/rsif.2014.0962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Colacino JA, Azizi E, Brooks MD et al (2018) Heterogeneity of human breast stem and progenitor cells as revelaed by transcriptional profiling. Stem Cell Rep 10:1596–1609. https://doi.org/10.1016/j.stemcr.2016.05.008

    Article  CAS  Google Scholar 

  82. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567. https://doi.org/10.1016/j.stem.2007.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goldman A, Majumder B, Dhawan A et al (2015) Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nat Commun 6:6139. https://doi.org/10.1038/ncomms7139

    Article  CAS  PubMed  Google Scholar 

  84. Kröger C, Afeyan A, Mraz J et al (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci USA 116:7353–7362. https://doi.org/10.1073/pnas.1812876116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi R, Liu L, Wang F et al (2020) Downregulation of cytokeratin 18 induces cellular partial EMT and stemness through increasing EpCAM expression in breast cancer. Cell Signal 76:109810. https://doi.org/10.1016/j.cellsig.2020.109810

    Article  CAS  PubMed  Google Scholar 

  86. Quan Q, Wang X, Lu C et al (2020) Cancer stem-like cells with hybrid epithelial/mesenchymal phenotype leading the collective invasion. Cancer Sci 111:467–476. https://doi.org/10.1111/cas.14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514. https://doi.org/10.1038/sj.cdd.4402283

    Article  CAS  PubMed  Google Scholar 

  88. Schliekelman MJ, Taguchi A, Zhu J et al (2015) Molecular portraits of epithelial, mesenchymal, and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Res 75:1789–1800. https://doi.org/10.1158/0008-5472.CAN-14-2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. George JT, Jolly MK, Xu S et al (2017) Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res 77:6415–6428. https://doi.org/10.1158/0008-5472.CAN-16-3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang H, Zhang H, Tang L et al (2013) Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 303:139–146. https://doi.org/10.1016/j.tox.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  91. Tièche CC, Gao Y, Bührer ED et al (2018) Tumor initiation capacity and therapy resistance are differential features of EMT-related subpopulations in the NSCLC cell line A549. Neoplasia 21:185–196. https://doi.org/10.1016/j.neo.2018.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jia D, George JT, Tripathi SC et al (2019) Testing the gene expression classification of the EMT spectrum. Phys Biol 16:025002. https://doi.org/10.1088/1478-3975/aaf8d4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moltzahn F, Thalmann GN (2013) Cancer stem cells in prostate cancer. Transl Androl Urol 2:242–253. https://doi.org/10.3978/j.issn.2223-4683.2013.09.06

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li H, Chen X, Calhoun-Davis T et al (2008) PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68:1820–1825. https://doi.org/10.1158/0008-5472.CAN-07-5878

    Article  CAS  PubMed  Google Scholar 

  95. Celià-Terrassa T, Meca-Cortés Ó, Mateo F et al (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 122:1849–1868. https://doi.org/10.1172/JCI59218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Padmanaban V, Krol I, Suhail Y et al (2019) E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573:439–444. https://doi.org/10.1038/s41586-019-1526-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cook DP, Vanderhyden BC (2020) Context specificity of the EMT transcriptional response. Nat Commun 11:2142. https://doi.org/10.1038/s41467-020-16066-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roca H, Hernandez J, Weidner S et al (2013) Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS ONE 8:e76773. https://doi.org/10.1371/journal.pone.0076773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ruscetti M, Dadashian EL, Guo W et al (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 35:3781–3795. https://doi.org/10.1038/onc.2015.444

    Article  CAS  PubMed  Google Scholar 

  100. Pastushenko I, Mauri F, Song Y et al (2021) Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature 589:448–455. https://doi.org/10.1038/s41586-020-03046-1

    Article  CAS  PubMed  Google Scholar 

  101. Youssef G, Gammon L, Ambler L et al (2020) Disseminating cells in human tumous acquire an EMT stem cell state that is predictive of metastasis. bioRxiv. https://doi.org/10.1101/2020.04.07.029009

    Article  PubMed  PubMed Central  Google Scholar 

  102. McFaline-Figueroa JL, Hill AJ, Qiu X et al (2019) A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat Genet 51:1389–1398. https://doi.org/10.1038/s41588-019-0489-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jia D, Jolly MK, Kulkarni P, Levine H (2017) Phenotypic plasticity and cell fate decisions in cancer : insights from dynamical systems theory. Cancers 9:E70. https://doi.org/10.3390/cancers9070070

    Article  CAS  PubMed  Google Scholar 

  104. Cantelli G, Orgaz JL, Rodriguez-Hernandez I et al (2015) TGF-β-induced transcription sustains amoeboid melanoma migration and dissemination. Curr Biol 25:2899–2914. https://doi.org/10.1016/j.cub.2015.09.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rodriguez-Hernandez I, Maiques O, Kohlhammer L et al (2020) WNT11-FZD7-DAAM1 signalling supports tumour initiating abilities and melanoma amoeboid invasion. Nat Commun 11:5315. https://doi.org/10.1038/s41467-020-18951-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Taddei ML, Giannoni E, Morandi A et al (2014) Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun Signal 12:24. https://doi.org/10.1186/1478-811X-12-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ben-Porath I, Thomson MWM, Carey VJVVJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. https://doi.org/10.1038/ng.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wagner DE, Klein AM (2020) Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet 21:410–427. https://doi.org/10.1038/s41576-020-0223-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chauhan L, Ram U, Hari K, Jolly MK (2021) Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer. Elife 10:e64522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pillai M, Jolly MK (2021) Systems-level network modeling deciphers the master regulators of phenotypic plasticity and heterogeneity in melanoma. bioRxiv. https://doi.org/10.1101/2021.03.11.434533

    Article  PubMed  PubMed Central  Google Scholar 

  111. Pasani S, Sahoo S, Jolly MK (2021) Hybrid E/M phenotype(s) and stemness: a mechanistic connection embedded in network topology. J Clin Med 10:60. https://doi.org/10.1101/2020.10.18.341271

    Article  CAS  Google Scholar 

  112. Lambert AW, Weinberg RA (2021) Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00332-6

    Article  PubMed  Google Scholar 

  113. Kahounová Z, Remšík J, Fedr R et al (2020) Slug-expressing mouse prostate epithelial cells have increased stem cell potential. Stem Cell Res 46:101844. https://doi.org/10.1016/j.scr.2020.101844

    Article  CAS  PubMed  Google Scholar 

  114. Luanpitpong S, Li J, Manke A et al (2016) SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 35(22):2824–2833. https://doi.org/10.1038/onc.2015.351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MKJ was supported by Ramanujan Fellowship (SB/S2/RJN-049/2018) awarded by Science and Engineering Research Board, Department of Science and Technology, Government of India; and by InfoSys Foundation, Bangalore. ASD acknowledges support from Prime Ministers’ Research Fellowship (PMRF). AB is supported by Animal Free Research UK.

Author information

Authors and Affiliations

Authors

Contributions

MKJ and AB conceptualized and edited the review; SS, BA and ASD prepared the first version and associated artwork. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Adrian Biddle or Mohit Kumar Jolly.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Ashraf, B., Duddu, A.S. et al. Interconnected high-dimensional landscapes of epithelial–mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis 39, 279–290 (2022). https://doi.org/10.1007/s10585-021-10139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10139-2

Keywords

Navigation