Skip to main content

Advertisement

Log in

Breast cancer liver metastasis: current and future treatment approaches

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Nearly all fatalities arising from breast tumors are attributable to distant metastases. Breast cancer liver metastasis (BCLM) is associated with poor prognoses, with the median survival time being 2 to 3 years. Tumor intrinsic subtype directs preferential metastasis to specific organs, with HER2-enriched tumors demonstrating the highest rates of metastasis to the liver, though all subtypes can grow in the liver. There is no singular established standard-of-care for BCLM; therapeutic selection is driven by histologic and molecular hallmarks of the primary tumor or biopsied metastasis samples. Given the poor prognosis of patients with hepatic spread, pre-clinical studies are necessary to identify and evaluate promising new treatment strategies. It is critical that these laboratory studies accurately recapitulate the BCLM disease process, standard progression, and histological attributes. In this review, we summarize the histologic and molecular characteristics of BCLM, evaluate the efficacy of existing surgical and medical treatment strategies, and discuss future approaches to preclinical study of BCLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Acknowledgement

 All figures were created using BioRender.com.

Data availability

N/A.

Consent for publication

N/A.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66(1):31–42. https://doi.org/10.3322/caac.21320

    Article  PubMed  Google Scholar 

  3. DeSantis CE et al (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69(6):438–451. https://doi.org/10.3322/caac.21583

    Article  PubMed  Google Scholar 

  4. Cummings MC et al (2014) Metastatic progression of breast cancer: insights from 50 years of autopsies. J Pathol 232(1):23–31. https://doi.org/10.1002/path.4288

    Article  CAS  PubMed  Google Scholar 

  5. Zhao HY, Gong Y, Ye FG, Ling H, Hu X (2018) Incidence and prognostic factors of patients with synchronous liver metastases upon initial diagnosis of breast cancer: a population-based study. Cancer Manag Res 10:5937–5950. https://doi.org/10.2147/CMAR.S178395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diamond JR, Finlayson CA, Borges VF (2009) Hepatic complications of breast cancer. Lancet Oncol 10(6):615–621. https://doi.org/10.1016/S1470-2045(09)70029-4

    Article  PubMed  Google Scholar 

  7. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  8. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. https://doi.org/10.1002/ijc.26031

  9. Paget S (1989) The distribution of secondary growths in cancer of the breast 1889. Cancer Metastasis Rev 8(2):98–101

  10. Harrell JC et al (2012) Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat 132(2):523–535. https://doi.org/10.1007/s10549-011-1619-7

    Article  CAS  PubMed  Google Scholar 

  11. Smid M et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68(9):3108–3114. https://doi.org/10.1158/0008-5472.CAN-07-5644

    Article  CAS  PubMed  Google Scholar 

  12. Kennecke H et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20):3271–3277. https://doi.org/10.1200/JCO.2009.25.9820

    Article  PubMed  Google Scholar 

  13. Chan S et al (1999) Prospective randomized trial of docetaxel versus doxorubicin in patients with metastatic breast cancer. J Clin Oncol 17(8):2341–2354. https://doi.org/10.1200/jco.1999.17.8.2341

    Article  CAS  PubMed  Google Scholar 

  14. Adam R et al (2006) Is liver resection justified for patients with hepatic metastases from breast cancer? Ann Surg 244(6):897–907. https://doi.org/10.1097/01.sla.0000246847.02058.1b

    Article  PubMed  PubMed Central  Google Scholar 

  15. Surveillance, Epidemiology, and End Results (SEER) Program. seer.cancer.gov

  16. Horn SR et al (2020) Epidemiology of liver metastases. Cancer Epidemiol 67:101760. https://doi.org/10.1016/j.canep.2020.101760

    Article  Google Scholar 

  17. Zhao Y et al (2020) Early death incidence and prediction in Stage IV breast cancer. Med Sci Monit 26:e924858. https://doi.org/10.12659/msm.924858

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gong Y, Liu YR, Ji P, Hu X, Shao ZM (2017) Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep 7(1):1–10. https://doi.org/10.1038/srep45411

    Article  CAS  Google Scholar 

  19. Wang S, Feng Y, Swinnen J, Oyen R, Li Y, Ni Y (2020) Incidence and prognosis of liver metastasis at diagnosis: a pan-cancer population-based study. Am J Cancer Res 10(5):1477–1517

  20. Liu D et al (2020) Breast subtypes and prognosis of breast cancer patients with initial bone metastasis: a population-based study. Front Oncol 10:1. https://doi.org/10.3389/fonc.2020.580112

    Article  Google Scholar 

  21. Kaplan MA et al (2016) Biological subtypes and distant relapse pattern in breast cancer patients after curative surgery (study of Anatolian Society of Medical Oncology). Breast Care 11(4):248–252. https://doi.org/10.1159/000448186

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ekpe E, Shaikh AJ, Shah J, Jacobson JS, Sayed S (2019) Metastatic breast cancer in Kenya: presentation, pathologic characteristics, and patterns—findings from a tertiary cancer center. J Glob Oncol 5:1–11. https://doi.org/10.1200/JGO.19.00036

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arciero CA et al (2019) ER+/HER2+ breast cancer has different metastatic patterns and better survival than ER−/HER2+ breast cancer. Clin Breast Cancer 19(4):236–245. https://doi.org/10.1016/j.clbc.2019.02.001

    Article  PubMed  Google Scholar 

  24. Alzubi MA et al (2019) Separation of breast cancer and organ microenvironment transcriptomes in metastases. Breast Cancer Res 21(1):36. https://doi.org/10.1186/s13058-019-1123-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alzubi MA et al (2019) Quantitative assessment of breast cancer liver metastasis expansion with patient-derived xenografts. Clin Exp Metastasis 36(3):257–269. https://doi.org/10.1007/s10585-019-09968-z

    Article  PubMed  Google Scholar 

  26. Coffelt SB, Wellenstein MD, De Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446. https://doi.org/10.1038/nrc.2016.52

    Article  CAS  PubMed  Google Scholar 

  27. Ren J, Wang Y, Ware T, Iaria J, Ten Dijke P, Zhu H-J (2020) Reactivation of BMP signaling by suboptimal concentrations of MEK inhibitor and FK506 reduces organ-specific breast cancer metastasis. Cancer Lett 493:41–54. https://doi.org/10.1016/j.canlet.2020.07.042

    Article  CAS  PubMed  Google Scholar 

  28. Wang L et al (2019) Identification of alternatively-activated pathways between primary breast cancer and liver metastatic cancer using microarray data. Genes (Basel) 10(100):753. https://doi.org/10.3390/genes10100753

    Article  CAS  Google Scholar 

  29. Garcia-Recio S et al (2020) FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Investig 130(9):4871–4887. https://doi.org/10.1172/jci130323

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tao Z et al (2020) Characterizations of cancer gene mutations in Chinese metastatic breast cancer patients. Front Oncol 10:1023. https://doi.org/10.3389/fonc.2020.01023

    Article  PubMed  PubMed Central  Google Scholar 

  31. St. Romain P, Madan R, Tawfik OW, Damjanov I, Fan F (2012) Organotropism and prognostic marker discordance in distant metastases of breast carcinoma: fact or fiction? A clinicopathologic analysis. Hum Pathol 43(3):398–404. https://doi.org/10.1016/j.humpath.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  32. Masciari S et al (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet 44(11):726–731. https://doi.org/10.1136/jmg.2007.051268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tasdemir N et al (2020) Proteomic and transcriptomic profiling identifies mediators of anchorage-independent growth and roles of inhibitor of differentiation proteins in invasive lobular carcinoma. Sci Rep 10(1):11487. https://doi.org/10.1038/s41598-020-68141-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Dam PJ et al (2017) International consensus guidelines for scoring the histopathological growth patterns of liver metastasis. Br J Cancer 117(10):1427–1441. https://doi.org/10.1038/bjc.2017.334

    Article  PubMed  PubMed Central  Google Scholar 

  35. Frentzas S et al (2016) Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 22(11):1294–1302. https://doi.org/10.1038/nm.4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Den Eynden GG, Bird NC, Majeed AW, Van Laere S, Dirix LY, Vermeulen PB (2012) The histological growth pattern of colorectal cancer liver metastases has prognostic value. Clin Exp Metastasis 29(6):541–549. https://doi.org/10.1007/s10585-012-9469-1

    Article  CAS  PubMed  Google Scholar 

  37. Stessels F et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436. https://doi.org/10.1038/sj.bjc.6601727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Illemann M et al (2009) Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases. Int J Cancer 124(8):1860–1870. https://doi.org/10.1002/ijc.24166

    Article  CAS  PubMed  Google Scholar 

  39. Nyström H, Naredi P, Berglund A, Palmqvist R, Tavelin B, Sund M (2012) Liver-metastatic potential of colorectal cancer is related to the stromal composition of the tumour. Anticancer Res 32(12):5185–5191

  40. Fernández Moro C, Bozóky B, Gerling M (2018) Growth patterns of colorectal cancer liver metastases and their impact on prognosis: a systematic review. BMJ Open Gastroenterol 5(1):e000217. https://doi.org/10.1136/bmjgast-2018-000217

    Article  PubMed  PubMed Central  Google Scholar 

  41. Simone C, Murphy M, Shifrin R, Zuluaga Toro T, Reisman D (2012) Rapid liver enlargement and hepatic failure secondary to radiographic occult tumor invasion: two case reports and review of the literature. J Med Case Rep 6:402. https://doi.org/10.1186/1752-1947-6-402

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grossniklaus HE (2013) Progression of ocular melanoma metastasis to the liver: the 2012 Zimmerman lecture. JAMA Ophthalmol 131(4):462–469. https://doi.org/10.1001/jamaophthalmol.2013.2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mentha G et al (2009) Dangerous halo after neoadjuvant chemotherapy and two-step hepatectomy for colorectal liver metastases. Br J Surg 96(1):95–103. https://doi.org/10.1002/bjs.6436

    Article  CAS  PubMed  Google Scholar 

  44. Bridgeman VL et al (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374. https://doi.org/10.1002/path.4845

    Article  CAS  PubMed  Google Scholar 

  45. Leenders WPJ et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10(18 I):6222–6230. https://doi.org/10.1158/1078-0432.CCR-04-0823

    Article  CAS  PubMed  Google Scholar 

  46. Tasleem S et al (2018) The role of liver resection in patients with metastatic breast cancer: a systematic review examining the survival impact. Ir J Med Sci 187(4):1009–1020. https://doi.org/10.1007/s11845-018-1746-9

    Article  PubMed  Google Scholar 

  47. Howlader M, Heaton N, Rela M (2011) Resection of liver metastases from breast cancer: towards a management guideline. Int J Surg 9(4):285–291. https://doi.org/10.1016/j.ijsu.2011.01.009

    Article  PubMed  Google Scholar 

  48. Golse N, Adam R (2017) Liver metastases from breast cancer: what role for surgery? Indications and results. Clin Breast Cancer 17(4):256–265. https://doi.org/10.1016/j.clbc.2016.12.012

    Article  PubMed  Google Scholar 

  49. McDermott S, Gervais DA (2013) Radiofrequency ablation of liver tumors. Semin Interv Radiol 30(1):49–55. https://doi.org/10.1055/s-0033-1333653

    Article  Google Scholar 

  50. Sofocleous CT et al (2007) Radiofrequency ablation in the management of liver metastases from breast cancer. Am J Roentgenol 189(4):883–889. https://doi.org/10.2214/AJR.07.2198

    Article  CAS  Google Scholar 

  51. Meloni MF, Andreano A, Laeseke PF, Livraghi T, Sironi S, Lee FT (2009) Breast cancer liver metastases: US-guided percutaneous radiofrequency ablation—intermediate and long-term survival rates. Radiology 253(3):861–869. https://doi.org/10.1148/radiol.2533081968

    Article  PubMed  Google Scholar 

  52. Bin Xiao Y, Zhang B, Lian Wu Y (2018) Radiofrequency ablation versus hepatic resection for breast cancer liver metastasis: a systematic review and meta-analysis. J Zhejiang Univ Sci B 19(11):829–843. https://doi.org/10.1631/jzus.B1700516

    Article  Google Scholar 

  53. Tong AKT, Kao YH, Too C, Chin KFW, Ng DCE, Chow PKH (2016) Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol 89(1062):20150943. https://doi.org/10.1259/bjr.20150943

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chang J et al (2018) Liver-dominant breast cancer metastasis: a comparative outcomes study of chemoembolization versus radioembolization. Anticancer Res 38(5):3063–3068. https://doi.org/10.21873/anticanres.12563

    Article  PubMed  Google Scholar 

  55. Bale R, Putzer D, Schullian P (2019) Local treatment of breast cancer liver metastasis. Cancers 11(9):1341. https://doi.org/10.3390/cancers11091341

    Article  PubMed  PubMed Central  Google Scholar 

  56. Howell A et al (2004) Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J Clin Oncol 22(9):1605–1613. https://doi.org/10.1200/JCO.2004.02.112

    Article  CAS  PubMed  Google Scholar 

  57. Nabholtz JM et al (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. J Clin Oncol 18(22):3758–3767. https://doi.org/10.1200/JCO.2000.18.22.3758

    Article  CAS  PubMed  Google Scholar 

  58. Mouridsen H et al (2003) Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol 21(11):2101–2109. https://doi.org/10.1200/JCO.2003.04.194

    Article  CAS  PubMed  Google Scholar 

  59. Paridaens RJ et al (2008) Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: The European Organisation for Research and Treatment of Cancer Breast Cancer Cooperative Group. J Clin Oncol 26(30):4883–4890. https://doi.org/10.1200/JCO.2007.14.4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robertson JFR et al (2012) Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: follow-up analysis from the randomized ‘FIRST’ study. Breast Cancer Res Treat 136(2):503–511. https://doi.org/10.1007/s10549-012-2192-4

    Article  CAS  PubMed  Google Scholar 

  61. Robertson JFR et al (2016) Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. Lancet 388(10063):2997–3005. https://doi.org/10.1016/S0140-6736(16)32389-3

    Article  CAS  PubMed  Google Scholar 

  62. Mehta RS et al (2012) Combination anastrozole and fulvestrant in metastatic breast cancer. N Engl J Med 367(5):435–444. https://doi.org/10.1056/NEJMoa1201622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bergh J et al (2012) FACT: an open-label randomized phase III study of fulvestrant and anastrozole in combination compared with anastrozole alone as first-line therapy for patients with receptor-positive postmenopausal breast cancer. J Clin Oncol 30(16):1919–1925. https://doi.org/10.1200/JCO.2011.38.1095

    Article  CAS  PubMed  Google Scholar 

  64. Johnston SRD et al (2013) Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial. Lancet Oncol 14(10):989–998. https://doi.org/10.1016/S1470-2045(13)70322-X

    Article  CAS  PubMed  Google Scholar 

  65. Gelmon et al (2020) Efficacy and safety of palbociclib plus endocrine therapy in North American women with hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. Breast J 26(3):368–375. https://doi.org/10.1111/tbj.13516

    Article  CAS  PubMed  Google Scholar 

  66. Sledge et al (2019) The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy-MONARCH 2: a randomized clinical trial. JAMA Oncol 6(1):116–124. https://doi.org/jamaoncol.2019.4782

  67. Yardley et al (2019) Efficacy and safety of Ribociclib with Letrozole in US patients enrolled in the MONALEESA-2 study. Clinical Breast Cancer 19(4):268–277.e1. https://doi.org/10.1016/j.clbc.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  68. Xie N, Qin T, Ren W, Yao H, Yu Y, Hong H (2020) Efficacy and safety of cyclin-dependent kinases 4 and 6 inhibitors in HR+/HER2− advanced breast cancer. Cancer Manag Res 12:4241–4250. https://doi.org/10.2147/CMAR.S254365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Brien NA et al (2020) Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Res 22(1):89. https://doi.org/10.1186/s13058-020-01320-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. André F et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380(20):1929–1940. https://doi.org/10.1056/NEJMoa1813904

    Article  PubMed  Google Scholar 

  71. Lu Y-S et al (2020) A Phase Ib study of alpelisib or buparlisib combined with tamoxifen plus goserelin in premenopausal women with HR-positive HER2-negative advanced breast cancer. Clin Cancer Res 27(2):408–417. https://doi.org/10.1158/1078-0432.ccr-20-1008

    Article  PubMed  PubMed Central  Google Scholar 

  72. Figueroa-Magalhães MC, Jelovac D, Connolly RM, Wolff AC (2014) Treatment of HER2-positive breast cancer. Breast 23(2):128–136. https://doi.org/10.1016/j.breast.2013.11.011

    Article  PubMed  Google Scholar 

  73. Diéras V et al (2017) Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 18(6):732–742. https://doi.org/10.1016/S1470-2045(17)30312-1

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaufman B et al (2009) Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol 27(33):5529–5537. https://doi.org/10.1200/JCO.2008.20.6847

    Article  CAS  PubMed  Google Scholar 

  75. Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119. https://doi.org/10.1056/NEJMoa1113216

    Article  CAS  PubMed  Google Scholar 

  76. Dormann C (2020) Metastatic human epidermal growth factor receptor 2-positive breast cancer: current treatment standards and future perspectives. Breast Care 15(6):570–578. https://doi.org/10.1159/000512328

    Article  PubMed  PubMed Central  Google Scholar 

  77. Geyer CE, Forster J, Lindquist D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. Adv Breast Cancer 5(2):45. https://doi.org/10.1056/nejmoa064320

  78. Ramagopalan SV, Pisoni R, Zenin A, Rathore LS, Ray J, Sammon C (2020) Comparative effectiveness of trastuzumab emtansine versus lapatinib plus capecitabine for HER2+ metastatic breast cancer. J Comp Eff Res. https://doi.org/10.2217/cer-2020-0201

    Article  PubMed  Google Scholar 

  79. Natori A, Ethier JL, Amir E, Cescon DW (2017) Capecitabine in early breast cancer: a meta-analysis of randomised controlled trials. Eur J Cancer 77:40–47. https://doi.org/10.1016/j.ejca.2017.02.024

    Article  CAS  PubMed  Google Scholar 

  80. Chalakur-Ramireddy NKR, Pakala SB (2018) Combined drug therapeutic strategies for the effective treatment of Triple Negative Breast Cancer. Biosci Rep 38(1):BSR20171357. https://doi.org/10.1042/BSR20171357

  81. Llombart-Cussac A et al (2015) SOLTI NeoPARP: a phase II randomized study of two schedules of iniparib plus paclitaxel versus paclitaxel alone as neoadjuvant therapy in patients with triple-negative breast cancer. Breast Cancer Res Treat 154(2):351–357. https://doi.org/10.1007/s10549-015-3616-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. O’Shaughnessy J et al (2014) Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32(34):3840–3847. https://doi.org/10.1200/JCO.2014.55.2984

    Article  CAS  PubMed  Google Scholar 

  83. Robson ME et al (2019) OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol 30(4):558–566. https://doi.org/10.1093/annonc/mdz012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee JS et al (2019) Phase I clinical trial of the combination of eribulin and everolimus in patients with metastatic triple-negative breast cancer. Breast Cancer Res 21(1):119. https://doi.org/10.1186/s13058-019-1202-4

    Article  PubMed  PubMed Central  Google Scholar 

  85. Singh JC et al (2014) Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res 16(2):R32. https://doi.org/10.1186/bcr3634

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jovanovic B et al (2017) A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67. Clin Cancer Res 23(15):4035–4045. https://doi.org/10.1158/1078-0432.CCR-16-3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mariani P et al (2013) Liver metastases from breast cancer: surgical resection or not? A case-matched control study in highly selected patients. Eur J Surg Oncol 39(12):1377–1383. https://doi.org/10.1016/j.ejso.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  88. Sadot E et al (2016) Hepatic resection or ablation for isolated breast cancer liver metastasis. Ann Surg 264(1):147–154. https://doi.org/10.1097/SLA.0000000000001371

    Article  PubMed  Google Scholar 

  89. Ruiz A et al (2018) Surgical resection versus systemic therapy for breast cancer liver metastases: results of a European case matched comparison. Eur J Cancer 95:1–10. https://doi.org/10.1016/j.ejca.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  90. Nizam E, Köksoy S, Erin N (2020) NK1R antagonist decreases inflammation and metastasis of breast carcinoma cells metastasized to liver but not to brain; phenotype-dependent therapeutic and toxic consequences. Cancer Immunol Immunother 69(8):1639–1650. https://doi.org/10.1007/s00262-020-02574-z

    Article  CAS  PubMed  Google Scholar 

  91. Wei W, Aitken D, Rogers C, McInerney D, Miller F (1986) Use of drug resistance markers to recover clonogenic tumor cells from occult metastases in host tissues. Invasion Metastasis 6(4):197–208. 

  92. Lelekakis M et al (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170. https://doi.org/10.1023/A:1006689719505

    Article  CAS  PubMed  Google Scholar 

  93. Jungwirth U et al (2018) Generation and characterisation of two D2A1 mammary cancer sublines to model spontaneous and experimental metastasis in a syngeneic BALB/c host. Dis Model Mech 11(1):dmm031740. https://doi.org/10.1242/dmm.031740

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pravtcheva DD, Wise TL (1998) Metastasizing mammary carcinomas in H19 enhancers-Igf2 transgenic mice. J Exp Zool 281(1):43–57. https://doi.org/10.1002/(SICI)1097-010X(19980501)281:1%3c43::AID-JEZ7%3e3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  95. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8(4):212. https://doi.org/10.1186/bcr1530

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lin SCJ et al (2004) Somatic mutation of p53 leads to estrogen receptor α-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 64(10):3525–3532. https://doi.org/10.1158/0008-5472.CAN-03-3524

    Article  CAS  PubMed  Google Scholar 

  97. Rikhi R et al (2016) Murine model of hepatic breast cancer. Biochem Biophys Rep 8:1–5. https://doi.org/10.1016/j.bbrep.2016.07.021

    Article  PubMed  PubMed Central  Google Scholar 

  98. Goddard ET, Fischer J, Schedin P (2016) A portal vein injection model to study liver metastasis of breast cancer. J Vis Exp 2016(118):1–10. https://doi.org/10.3791/54903

    Article  CAS  Google Scholar 

  99. Gillet JP et al (2011) Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA 108(46):18708–18713. https://doi.org/10.1073/pnas.1111840108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nugoli M et al (2003) Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer 3:13. https://doi.org/10.1186/1471-2407-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wagenblast E et al (2015) A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520(7547):358–362. https://doi.org/10.1038/nature14403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Davis RT et al (2020) Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol 22(3):310–320. https://doi.org/10.1038/s41556-020-0477-0

    Article  CAS  PubMed  Google Scholar 

  103. DeRose YS et al (2013) Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol 14:14.23. https://doi.org/10.1002/0471141755.ph1423s60

    Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang X et al (2013) A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res 73(15):4885–4897. https://doi.org/10.1158/0008-5472.CAN-12-4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marangoni E et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998. https://doi.org/10.1158/1078-0432.CCR-07-0078

    Article  CAS  PubMed  Google Scholar 

  106. Johnson JI et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84(10):1424–1431. https://doi.org/10.1054/bjoc.2001.1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE (2015) Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. https://doi.org/10.1186/s13058-015-0523-1

    Article  PubMed  PubMed Central  Google Scholar 

  108. Brown KM et al (2018) Using patient-derived xenograft models of colorectal liver metastases to predict chemosensitivity. J Surg Res 227:158–167. https://doi.org/10.1016/j.jss.2018.02.018

    Article  PubMed  Google Scholar 

  109. Guo J, Yu Z, Das M, Huang L (2020) Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano 14(4):5075–5089. https://doi.org/10.1021/acsnano.0c01676

    Article  CAS  PubMed  Google Scholar 

  110. Schneider C et al (2017) Identification of liver metastases with probe-based confocal laser endomicroscopy at two excitation wavelengths. Lasers Surg Med 49(3):280–292. https://doi.org/10.1002/lsm.22617

    Article  PubMed  Google Scholar 

  111. Shi L et al (2019) Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. https://doi.org/10.1038/s41467-019-13204-3

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kumar G et al (2018) Targeting STAT3 to suppress systemic pro-oncogenic effects from hepatic radiofrequency ablation. Radiology 286(2):524–536. https://doi.org/10.1148/radiol.2017162943

    Article  PubMed  Google Scholar 

  113. Zhang Z et al (2019) Incomplete radiofrequency ablation provokes colorectal cancer liver metastases through heat shock response by PKCα/Fra-1 pathway. Cancer Biol Med 16(3):542–555. https://doi.org/10.20892/j.issn.2095-3941.2018.0407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ma R et al (2015) Mechanisms involved in breast cancer liver metastasis. J Transl Med 13:64. https://doi.org/10.1186/s12967-015-0425-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Declarations

None.

Funding

This work was supported by Grants to JCH from the NIH/NCI (1R01CA246182-01A1), the Susan G. Komen Foundation (CCR19608826), and the Jeffress Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chuck Harrell.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

N/A.

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, N.S., Grible, J.M., Clevenger, C.V. et al. Breast cancer liver metastasis: current and future treatment approaches. Clin Exp Metastasis 38, 263–277 (2021). https://doi.org/10.1007/s10585-021-10080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10080-4

Keywords

Navigation