Skip to main content

Advertisement

Log in

Molecular targets and pathways involved in liver metastasis of colorectal cancer

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We here summarize the current view of molecular mechanisms involved in the dissemination process of colorectal cancer cells to the liver as deduced from preclinical models. We focus on molecular aspects of the current understanding of the biology of liver metastases formation and survival, both being crucial for identification and validation of possible therapeutic targets and review the latest findings elucidating some features of the liver as a metastatic niche. In more detail, we outline the role of proteases and of major pathways such asc-MET signaling and its modulation by factors such as MACC1 and TIMP1, as well as Notch and TGFβ signaling. The relevance of these signalling pathways during tumor-stroma interactions in this context will be addressed. In addition, the functional role and validation of targets such as PRL3, Trop-2, L1CAM, S100A4, S100P, CD133, LIPC, and APOBEC3G are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    CAS  PubMed  Google Scholar 

  2. Velculescu VE, Vogelstein B, Kinzler KW (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet 16:423–425

    CAS  PubMed  Google Scholar 

  3. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hölzl D, Eckel R, Engel J (2009) Colorectal cancer metastasis. Frequency, prognosis and consequences. Chirurg 80:331–340

    Google Scholar 

  5. Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenz R, Abbruzzese JL (2006) Metastatic patterns in adenocarcinoma. Cancer 106:1624–1633

    PubMed  Google Scholar 

  6. Wan L, Pantel K, Kang Y (2013) Tumor metastasis: moving new biological insights into the clinic. Nat Med 19:1450–1564

    CAS  PubMed  Google Scholar 

  7. Deneve E, Rietdorf S, Ramos J et al (2013) Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 59:1384–1392

    CAS  PubMed  Google Scholar 

  8. MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. BioEssays 24:885–893

    CAS  PubMed  Google Scholar 

  9. Padget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Google Scholar 

  10. Sceneay J, Smith MJ, Möller H (2013) The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32:449–464

    CAS  PubMed  Google Scholar 

  11. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    CAS  PubMed  Google Scholar 

  12. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Brabletz T, Jung A, Hermann K, Günther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704

    CAS  PubMed  Google Scholar 

  14. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98:10356–10361

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kirchner T, Brabletz T (2000) Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with human gastrulation. Am J Pathol 157:1113–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Placke T, Kopp HG, Salih HR (1996) The wolf in sheeps clothing: platelet derived “pseudo-self” impairs cancer cell “missing self” recognition by NK cells. Oncoimmunology 1:557–559

    Google Scholar 

  17. Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RH, Meijer S (1996) Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology 23:1224–1231

    CAS  PubMed  Google Scholar 

  18. Luo DZ, Vermijlen D, Ahisali B, Triantis V, Plakoutsi G, Braet F, Vanderkerken K, Wisse E (2000) On the biology of pit cells, the liver-specific NK cells. World J Gastroenterol 6:1–11

    PubMed  Google Scholar 

  19. Wellner UF, Keck T, Brabletz T (2010) Liver metastases: pathogenesis and oncogenesis. Chirurg 81:551–556

    CAS  PubMed  Google Scholar 

  20. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Paschos KA, Majeed AW, Bird NC (2014) Natural history of hepatic metastases from colorectal-pathological pathways with clinical significance. World J Gastroenterol 20:3719–3737

    PubMed Central  PubMed  Google Scholar 

  22. Giavazzi R, Jessup JM, Campbell DE, Walker SM, Fidler IJ (1986) Experimental nude mouse model of human colorectal cancer liver metastases. J Natl Cancer Inst 77:1303–1308

    CAS  PubMed  Google Scholar 

  23. Morikawa K, Walker SM, Jessup JM, Fidler IJ (1988) In vivo selection of highly metastatic cells from surgical specimens of different human primary colon carcinomas in nude mice. Cancer Res 48:1943–1948

    CAS  PubMed  Google Scholar 

  24. Fidler IJ (1991) Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev 10:229–243

    CAS  PubMed  Google Scholar 

  25. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ (1988) Influence of organ environment on the growth, selection and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48:6863–6871

    CAS  PubMed  Google Scholar 

  26. Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 13:209–243

    CAS  PubMed  Google Scholar 

  27. Radinski R, Risin S, Fan D, Dong Z, Bielenberg D, Bucana CD, Fidler IJ (1995) Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1:19–31

    Google Scholar 

  28. Kitadai Y, Bucana CD, Ellis LM, Anzai H, Tahara E, Fidler IJ (1995) In situ mRNA hybridization technique for analysis of metastasis-related genes in human colon carcinoma cells. Am J Pathol 147:1238–1247

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Takahashi Y, Llis LM, Wilson MR, Bucana CD, Kitadai Y (1996) Progressive upregulation of metastasis-related genes in human colon cancer cells implanted into the cecum of nude mice. Oncol Res 8:163–169

    CAS  PubMed  Google Scholar 

  30. Kitadai Y, Sasaki T, Kuwai T, Nakamura T, Bucana CD, Fidler IJ (2006) Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma. Am J Pathol 169:2054–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Kuwai T, Nakamura T, Sasaki T, Kitadai Y, Kim JS, Langley RR, Fan D, Wang X, Do KA, Kim SJ, Fidler IJ (2008) Targeting EGFR, VEGFR, and PDGFR on colon cancer cells is required for therapy. Clin Exp Metastasis 25:477–489

    CAS  PubMed  Google Scholar 

  32. Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J, Yu H, Garcia R, Jove R, Yeatman TJ (1997) Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15:3083–3090

    CAS  PubMed  Google Scholar 

  33. Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W, Karl R, Fujita DJ, Jove R, Yeatman TH (1999) Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21:187–190

    CAS  PubMed  Google Scholar 

  34. Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 390:91–97

    Google Scholar 

  35. Overall CM, Lopez-Otin C (2007) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Google Scholar 

  36. Krüger A (2009) Functional genetic mouse models: promising tools for investigation of the proteolytic internet. Biol Chem 390:91–97

    PubMed  Google Scholar 

  37. Krüger A, Kates RE, Edwards DR (2009) Avoiding spam in the proteolytic internet: future strategies for anti-metastatic MMP inhibition. Biochim Biophys Acta 1803:95–102

    PubMed  Google Scholar 

  38. Han J, Gao B, Jin X, Li Z, Sun Y, Song B (2012) Small interfering RNA down-regulation of β-catenin inhibits invasion of colon cancer cells in vitro. Med Sci Monit 18:BR273–BR280

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Damodharan U, Ganesan R, Radhakrishnan UC (2011) Expression of MMP2 and MMP9 gelatinases in human colon cancer cells. Appl Biochem Biotechnol 165:1245–1252

    CAS  PubMed  Google Scholar 

  40. Krüger A, Soeltl R, Sopov I, Kopitz C, Artl M, Magdolen V, Harbeck N, Gänsbacher B, Schmitt M (2001) Hydroxamate-type matrix metalloprotease inhibitor batimastat promotes liver metastasis. Cancer Res 61:1272–1275

    PubMed  Google Scholar 

  41. Clinchi B, Fransson A, Druvefors B, Hellsten A, Hakansson A, Gustavson B, Sjödahl R, Hakanson L (2007) Preoperative interleukin-6 production by mononuclear blood cells predicts survival after radical surgery for colorectal carcinoma. Cancer 109:1742–1749

    Google Scholar 

  42. Gerg M, Kopitz C, Schaten S et al (2008) Distinct functionality of tumor cell-derived gelatinases during formation of liver metastases. Mol Cancer Res 6:341–351

    CAS  PubMed  Google Scholar 

  43. Arlt M, Kopitz C, Pennington C et al (2002) Increase in gelatinase-specificity of matrix metalloprotease inhibitors correlates with antimetastatic efficacy in a T-cell lymphoma model. Cancer Res 62:5543–5550

    CAS  PubMed  Google Scholar 

  44. Seubert B, Grünwald B, Kobuch J et al (2014) TIMP1 creates a pre-metastatic niche in the liver through SDF/CXCR4-dependent neutrophil recruitment in mice. Hepatology 61:238–248

    PubMed  Google Scholar 

  45. Moller Sorensen N, Veigaard Sorensen I, Ornbierg Würtz S et al (2008) Biology and potential clinical implications of tissue inhibitor of metalloproteinases-1 in colorectal cancer treatment. Scand J Gastroenterol 43:774–786

    PubMed  Google Scholar 

  46. Holten-Andersen MN, Stephens RW, Nielsen HJ et al (2000) High preoperative plasma tissue inhibitor of metalloproteinases-1 levels are associated with short survival of patients with colorectal cancer. Clin Cancer Res 6:4292–4299

    CAS  PubMed  Google Scholar 

  47. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    CAS  PubMed  Google Scholar 

  49. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12:89–103

    CAS  PubMed  Google Scholar 

  50. Liu Y, Yu X-F, Zou J, Luo Z-H (2015) Prognostic value of c-MET in colorectal cancer: a meta-analysis. World J Gastroenterol 21:3706–3710

    PubMed Central  PubMed  Google Scholar 

  51. Liu Y, Li Q, Zhu L (2012) Expression of hepatocyte growth factor and c-MET in colon cancer: correlation with clinicopathological features and overall survival. Tumori 98:105–112

    PubMed  Google Scholar 

  52. Luraghi P, Schelter F, Krüger A, Boccaccio C (2012) The MET oncogene as a therapeutic target in cancer invasive growth. Front Pharmacol 3:164

    PubMed Central  PubMed  Google Scholar 

  53. Kopitz C, Gerg M, Bandapalli OR et al (2007) Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67:8615–8623

    CAS  PubMed  Google Scholar 

  54. Murphy G (2011) Tissue inhibitors of metalloproteases. Genome Biol 12:233

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Schelter F, Grandl M, Seubert B et al (2011) Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met signaling via inhibition of Adam-10. Clin Exp Metastasis 28:793–802

    CAS  PubMed  Google Scholar 

  56. Schrötzlmair F, Kopitz C, Halbgewachs B (2010) Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by host-derived urokinase type plasminogen activator. J Cell Mol Med 14:2760–2770

    PubMed Central  PubMed  Google Scholar 

  57. Schelter F, Halbgewachs B, Bäumler P et al (2010) Tissue inhibitor of metalloproteinases-1 induced scattered liver metastasis is mediated by hypoxia-inducible factor-1α. Clin Exp Metastasis 28:91–99

    PubMed  Google Scholar 

  58. Schelter F, Gerg M, Halbgewachs B et al (2010) Identification of survival-independent metastasis enhancing role of hypoxia-inducible factor-1 alpha with a hypoxia-tolerant tumor cell line. J Biol Chem 285:26182–26189

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25:3934–3942

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Toricelli M, Melo FH, Peres GB, Siulva DC, Jasiulionis MG (2013) Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3 K signaling pathway independently of Akt phosphorylation. Mol Cancer 12:51

    Google Scholar 

  61. Puissegur MP, Mazure NM, Bertero P et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18:465–478

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Cui A, Seubert B, Stahl E et al (2014) Tissue inhibitor of metalloproteinases-1 induces a protumorigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes. Oncogene in press

  63. Cui H, Grosso S, Schelter F, Mari B, Krueger A (2012) On the prometastatic stress response in cancer therapies: evidence for a positive cooperation between TIMP-1, HIF-1α and miR-210. Front Pharmacol 3:134

    PubMed Central  PubMed  Google Scholar 

  64. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    CAS  PubMed  Google Scholar 

  65. Sorensen NM, Byström P, Christensen IJ et al (2007) TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving a combination of irinotecan, 5-fluoruracil, and folinic acid. Clin Cancer Res 13:4117–4122

    PubMed  Google Scholar 

  66. Stein U, Walther W, Arlt F et al (2009) MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med 15:59–67

    CAS  PubMed  Google Scholar 

  67. Isella C, Mellano A, Galimi F et al (2013) MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Ann Surg 257:1089–1095

    PubMed  Google Scholar 

  68. Stein U, Burock S, Herrmann P et al (2012) Circulating MACC1 transcripts in colorectal cancer patient plasma predict metastasis and prognosis. PLoS ONE 7:e49249

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Stein U, Dahlmann M, Walther W (2010) MACC1 – more then metastasis? Facts and predictions about a novel gene. J Mol Med 88:11–18

    CAS  PubMed  Google Scholar 

  70. Arlt F, Stein U (2009) Colon cancer metastasis: MACC1 and Met as metastatic pacemakers. Int J Biochem Cell Biol 41:2356–2359

    CAS  PubMed  Google Scholar 

  71. Zhang Y, Wang Z, Chen M et al (2012) MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer 11:23

    PubMed Central  PubMed  Google Scholar 

  72. Ostman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6:307–320

    PubMed  Google Scholar 

  73. Bessette DC, Qui D, Pallen C (2008) PRL PTPs: mediators and markers of cancer prognosis. Cancer Metastasis Rev 27:231–252

    CAS  PubMed  Google Scholar 

  74. Lee SK, Han YM, Yun J et al (2012) Phosphatase of regenerating liver-3 promotes migration and invasion by upregulating matrix metalloproteinases-7 in human colorectal cancer cells. Int J Cancer 131:E190–E203

    CAS  PubMed  Google Scholar 

  75. Al-Aidaroos AQ, Yuen HD, Guo K (2013) Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells. J Clin Invest 123:3459–3471

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Al-Aidaroos AQ, Zeng Q (2010) PRL3 phosphatase and cancer metastasis. J Cell Biochem 111:1087–1098

    CAS  PubMed  Google Scholar 

  77. Saha S, Bardelli A, Buckhaults P et al (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294:1343–1346

    CAS  PubMed  Google Scholar 

  78. Bardelli A, Saha S, Sager JA et al (2003) PRL-3 expression in metastatic cancers. Clin Cancer Res 9:5607–5615

    CAS  PubMed  Google Scholar 

  79. Zeng Q, Dong JM, Guo K et al (2003) PRL-3 and PRL-1 promote cell migration, invasion and metastasis. Cancer Res 63:2716–2722

    CAS  PubMed  Google Scholar 

  80. Jiang Y, Liu XQ, Rajput A et al (2011) Phosphatase PRL-3 is a direct regulatory target of TGFβ in colon cancer metastasis. Cancer Res 71:234–244

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Guo K, Tang JP, Tan CP, Wang H, Zeng Q (2008) Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol Ther 7:750–757

    CAS  PubMed  Google Scholar 

  82. Guo K, Tang JP, Al-Aidaroos AQ et al (2012) Engineering the first chimeric antibody in targeting intracellular PRL-3 oncoprotein for cancer therapy in mice. Oncotarget 3:158–171

    PubMed Central  PubMed  Google Scholar 

  83. Weidle UH, Eggle D, Klostermann S (2009) L1-CAM as a target for treatment of cancer with monoclonal antibodies. Anticancer Res 29:4919–4931

    CAS  PubMed  Google Scholar 

  84. Gavert S, Conacci-Sorell M, Gast D et al (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon tumors. J Cell Biol 168:633–642

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Gerg M, Kopitz C, Schaten S et al (2008) Distinct functionality of tumor-cell derived gelatinases during formation of liver metastases. Mol Cancer Res 6:341–351

    CAS  PubMed  Google Scholar 

  86. Weinspach D, Seubert B, Schaten S et al (2014) Role of L1 cell adhesion molecule (L1CAM) in the metastatic cascade: promotion of dissemination, colonization and metastatic growth. Clin Exp Metastasis 31:87–100

    CAS  PubMed  Google Scholar 

  87. Lim IT, Brown S, Mobashery S (2004) A convenient synthesis of a selective gelatinase inhibitor as an antimetastatic agent. J Org Chem 69:3572–3573

    CAS  PubMed  Google Scholar 

  88. Coutelle O, Nyakatura G, Tsudien S et al (1998) The neural cell adhesion molecule L1: genomic organisation and differential splicing is conserved between man and the pufferfish fugu. Gene 208:7–15

    CAS  PubMed  Google Scholar 

  89. De Angelis E, Brummendorf T, Cheng L, Lemmon V, Kenwrick S (2001) Alternative use of a mini exon of the L1 gene affects L1 binding to neural ligands. J Biol Chem 276:32738–32742

    PubMed  Google Scholar 

  90. Kamiguchi H, Long KE, Pendergast M, Schaefer AW, Rapoport I, Kirchhausen T, Lemmon V (1998) The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via its clathrin-mediated pathway. J Neurosc 18:5311–5321

    CAS  Google Scholar 

  91. Hauser S, Bickel L, Weinspach D et al (2011) Full-length L1CAM and not its ∆2∆27 splice variant promotes metastasis through induction of gelatinase expression. PLoS One 6:e18989

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Gast D, Riedle S, Kiefel H et al (2008) The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp Cell Res 314:2411–2418

    CAS  PubMed  Google Scholar 

  93. Gavert N, Ben-Shmuel A, Lemmon V, Brabletz T, Ben-Zeév A (2010) Nuclear factor-kappa B signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J Cell Sci 123:2135–2143

    CAS  PubMed  Google Scholar 

  94. Gast D, Riedle S, Issa Y et al (2008) The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27:1281–1289

    CAS  PubMed  Google Scholar 

  95. Arlt M, Novak-Hofer I, Gast D et al (2006) Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. Cancer Res 66:936–943

    CAS  PubMed  Google Scholar 

  96. Wolterink S, Moldenhauer G, Fogel M et al (2010) Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res 70:2504–2515

    CAS  PubMed  Google Scholar 

  97. Schäfer H, Dieckmann C, Kornijenko O et al (2012) Combined treatment of L1CAM antibodies and cytotstatic drugs improve the therapeutic response to pancreatic and ovarian carcinoma. Cancer Lett 319:66–82

    PubMed  Google Scholar 

  98. Kaifi JT, Reichelt U, Quaas A et al (2007) L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol 20:1183–1190

    CAS  PubMed  Google Scholar 

  99. Boo YJ, Park JM, Kim J et al (2007) L1 expression as a marker for poor diagnosis, tumor progression, and short survival in patients with colorectal cancer. Ann Surg Oncol 14:1703–1711

    PubMed  Google Scholar 

  100. Gavert N, Sheffer M, Raveh S et al (2007) Expression of L1-CAM and ADAM 10 in human colon cancer cells induces metastasis. Cancer Res 67:7703–7712

    CAS  PubMed  Google Scholar 

  101. Gavert N, Conacci-Sorrell M, Gast D et al (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168:633–642

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Gavert N, Ben-Shmuel A, Raveh S, Ben-Zeév A (2008) L1-CAM in cancerous tissues. Expert Opin Biol Ther 8:1749–1757

    CAS  PubMed  Google Scholar 

  103. Trerotola M, Cantanelli P, Guerra E et al (2013) Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene 32:222–233

    CAS  PubMed  Google Scholar 

  104. Wang J, Day R, Dong Y, Weintraub SJ, Michel L (2008) Identification of Trop-2 as an oncogene and an attractive target in colon cancers. Mol Cancer Ther 7:280–285

    CAS  PubMed  Google Scholar 

  105. Cubas R, Zhang S, Li M, Chen C, Yao Q (2010) Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol Cancer 9:253

    PubMed Central  PubMed  Google Scholar 

  106. Guerra E, Trerotola M, Aloisi AL et al (2013) The Trop-2 signaling network in cancer growth. Oncogene 32:1594–1600

    CAS  PubMed  Google Scholar 

  107. Ohmachi T, Taneka Miori K, Inoue H, Yanaga K, Mori M (2006) Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057–3063

    CAS  PubMed  Google Scholar 

  108. Fang YH, Lu ZH, Wang GQ et al (2007) Elevated expression of MMP7, TROP2, and Survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int J Colorectal Dis 24:875–884

    Google Scholar 

  109. Alberti S, Trerotola G, Vaca R et al (2007) TROP2 is a major determinant of growth and metastatic spreading of human cancer. J Clin Oncol 25(18S):10510

    Google Scholar 

  110. Donato R, Cannon BR, Sorci G et al (2013) Functions of S100 proteins. Curr Mol Med 1:24–57

    Google Scholar 

  111. Sack U, Walther W, Scuderio D et al (2011) S100A4-induced cell motility and metastasis is restricted by the Wnt/β-catenin pathway inhibitor calcimycin in colon cancer cells. Mol Biol Cell 22:3344–3354

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Cho YG, Kim CJ, Nam SW (2005) Overexpression of S100A4 is closely associated with progression of colorectal cancer. World J Gastroenterol 11:4852–4856

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Boye K, Nesland JM, Sandstad B, Maelandsmo GM, Flatmark K (2007) Nuclear S100A4 is a novel prognostic marker in colorectal cancer. Eur J Cancer 46:2919–2925

    Google Scholar 

  114. Dahlmann M, Sack U, Herrmann P et al (2012) Systemic shRNA mediated knock down of S100A4 in colorectal cancer xenografted mice reduces metastasis formation. Oncotarget 3:783–797

    PubMed Central  PubMed  Google Scholar 

  115. Stein U, Arlt F, Walther W et al (2006) The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology 131:1486–1500

    CAS  PubMed  Google Scholar 

  116. Ding Q, Chang CJ, Xie X et al (2011) APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Invest 121:4526–4536

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Wang Q, Zhang YN, Lin GL et al (2012) S100P, a potential novel prognostic marker in colorectal cancer. Oncol Rep 28:303–310

    PubMed  Google Scholar 

  118. Chandramouli A, Mercado-Pimentel ME, Hutchinson A et al (2010) The induction of S100P expression by the prostaglandin E2 (PGE2/EP4 receptor signaling pathway in colon cancer cells. Cancer Biol Ther 28:303–310

    Google Scholar 

  119. Dong L, Wang F, Yin X et al (2014) Overexpression of S100P promotes colorectal cancer metastasis and decreases chemosensitivity to 5-FU in vitro. Mol Cell Biochem 389:257–264

    CAS  PubMed  Google Scholar 

  120. Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43:993–999

    CAS  PubMed  Google Scholar 

  121. Nomura DK, Long JZ, Niessen S et al (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Notarnicola M, Messa C, Caruso MG (2012) A significant role of lipogenic enzymes in colorectal cancer. Anticancer Res 32:2585–2590

    CAS  PubMed  Google Scholar 

  123. Silinsky J, Grimes C, Driscoll T et al (2013) CD 133+ and CXCR4+ colon cancer cells as a marker for lymph node metastasis. J Surg Res 185:113–118

    CAS  PubMed  Google Scholar 

  124. Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Jaszczur M, Bertram JG, Pham P, Scharff MD, Goodman MF (2013) AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci 70:3089–3108

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Huang J, Liang Z, Yang B, Tian H, Ma J, Zhang H (2007) Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J Biol Chem 282:33632–33640

    CAS  PubMed  Google Scholar 

  127. Gallois-Montbrun S, Kramer B, Swanson CM et al (2007) Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J Virol 81:2165–2178

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumors: a little bit of everything but not all the time. Nat Rev Cancer 11:338–351

    CAS  PubMed  Google Scholar 

  129. Sonoshita M, Aoki M, Fuwa H et al (2011) Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19:125–137

    CAS  PubMed  Google Scholar 

  130. Katz LH, Li Y, Chen J-S et al (2013) Targeting TGFβ signaling in cancer. Exp Opin Ther Targets 17:743–760

    CAS  Google Scholar 

  131. Pickup M, Novitsky S, Moses HL (2013) The role of TGFβ in the tumor microenvironment. Nat Rev Cancer 13:788–799

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Zhang B, Halder SK, Kashikar ND et al (2010) Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 138:969–980

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Halder SK, Rachakonda G, Deane NG, Datta PK (2008) Smad7 induces hepatic metastasis in colorectal cancer. Br J Cancer 99:957–965

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Calon A, Espinet E, Palomo-Ponce S et al (2012) Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Shibayama M, Maak M, Nitsche U et al (2011) Prediction of metastasis and recurrence in colorectal cancer based on gene expression analysis: ready for the clinic? Cancers 3:2858–2869

    PubMed Central  PubMed  Google Scholar 

  137. Taketo MM (2011) Reflections on the spread of metastasis to cancer prevention. Cancer Prev Res 4:324–328

    CAS  Google Scholar 

  138. Ye L-C, Liu T-S, Ren L et al (2013) Randomized controlled clinical trial of cetuximab plus chemotherapy for patients with KRAS unresectable colorectal liver-limited metastasis. J Clin Oncol 31:1931–1938

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants to A.K. from Deutsche Forschungsgemeinschaft (KR2047 1-2, KR2047 1-3, KR2047 3-1, and KR2047 4-2) and the European Union Research Framework Programme 7 (HEALTH-2007-201279/Microenvimet, and NMP-2010-263307/SaveMe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Krüger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidle, U.H., Birzele, F. & Krüger, A. Molecular targets and pathways involved in liver metastasis of colorectal cancer. Clin Exp Metastasis 32, 623–635 (2015). https://doi.org/10.1007/s10585-015-9732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9732-3

Keywords

Navigation